論文の概要: Automatic Mapping of Unstructured Cyber Threat Intelligence: An
Experimental Study
- arxiv url: http://arxiv.org/abs/2208.12144v1
- Date: Thu, 25 Aug 2022 15:01:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-26 13:12:57.638485
- Title: Automatic Mapping of Unstructured Cyber Threat Intelligence: An
Experimental Study
- Title(参考訳): 非構造化サイバー脅威インテリジェンスの自動マッピング--実験的検討
- Authors: Vittorio Orbinato, Mariarosaria Barbaraci, Roberto Natella, Domenico
Cotroneo
- Abstract要約: 機械学習(ML)を用いた攻撃手法における非構造化サイバー脅威情報(CTI)の自動分類に関する実験的検討を行った。
CTI分析のための2つの新しいデータセットにコントリビュートし、従来の機械学習モデルとディープラーニングモデルの両方を含む、いくつかのMLモデルを評価した。
本稿では,このタスクにおいてMLがどのように機能するか,どの分類器が最善か,どの条件下か,その主な原因である分類誤り,CTI分析の課題について,いくつかの教訓を提示する。
- 参考スコア(独自算出の注目度): 1.1470070927586016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Proactive approaches to security, such as adversary emulation, leverage
information about threat actors and their techniques (Cyber Threat
Intelligence, CTI). However, most CTI still comes in unstructured forms (i.e.,
natural language), such as incident reports and leaked documents. To support
proactive security efforts, we present an experimental study on the automatic
classification of unstructured CTI into attack techniques using machine
learning (ML). We contribute with two new datasets for CTI analysis, and we
evaluate several ML models, including both traditional and deep learning-based
ones. We present several lessons learned about how ML can perform at this task,
which classifiers perform best and under which conditions, which are the main
causes of classification errors, and the challenges ahead for CTI analysis.
- Abstract(参考訳): 敵エミュレーションのようなセキュリティに対する積極的なアプローチは、脅威アクターとその技術(Cyber Threat Intelligence, CTI)に関する情報を活用する。
しかし、ほとんどのCTIは、インシデントレポートや漏洩文書など、構造化されていない形式(自然言語など)が残っている。
本研究では,機械学習(ML)を用いた攻撃手法への非構造化CTIの自動分類に関する実験的検討を行った。
CTI分析のための2つの新しいデータセットにコントリビュートし、従来の学習モデルとディープラーニングモデルの両方を含むいくつかのMLモデルを評価する。
本稿では,このタスクにおいてMLがどのように機能するか,どの分類器が最も機能し,どの条件下でどの分類誤りの原因となるか,そしてCTI分析の課題について学ぶ。
関連論文リスト
- In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - CTISum: A New Benchmark Dataset For Cyber Threat Intelligence Summarization [14.287652216484863]
CTI要約タスクのための新しいベンチマークであるCTISumを提案する。
攻撃プロセスの重要性を考慮すると,攻撃プロセスの要約の詳細なサブタスクが提案されている。
論文 参考訳(メタデータ) (2024-08-13T02:25:16Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - Actionable Cyber Threat Intelligence using Knowledge Graphs and Large Language Models [0.8192907805418583]
Microsoft、Trend Micro、CrowdStrikeはCTI抽出を容易にするために生成AIを使用している。
本稿では,Large Language Models(LLMs)とKGs(KGs)の進歩を利用して,実行可能なCTIの抽出を自動化するという課題に対処する。
本手法は,情報抽出と構造化を最適化するために,プロンプトエンジニアリング,ガイダンスフレームワーク,微調整などの手法を評価する。
実験により,本手法が関連する情報抽出に有効であることを示すとともに,指導と微調整により,迅速な工学よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-06-30T13:02:03Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context Learning (ICL)は、新しいタスクに適応する革新的な能力として認識されている。
本論文は、ICLのデータ中毒に対する感受性の重大な問題について述べる。
ICLの学習メカニズムを活用するために考案された特殊攻撃フレームワークであるICLPoisonを紹介する。
論文 参考訳(メタデータ) (2024-02-03T14:20:20Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Threat Assessment in Machine Learning based Systems [12.031113181911627]
我々は機械学習に基づくシステムに対して報告された脅威を実証研究する。
この研究は、MITREのATLASデータベース、AIインシデントデータベース、および文学からの89の現実世界のML攻撃シナリオに基づいている。
その結果,畳み込みニューラルネットワークは攻撃シナリオの中でも最も標的となるモデルの一つであることがわかった。
論文 参考訳(メタデータ) (2022-06-30T20:19:50Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Automated Retrieval of ATT&CK Tactics and Techniques for Cyber Threat
Reports [5.789368942487406]
我々は,非構造化テキストから戦術,技法,手順を自動的に抽出するいくつかの分類手法を評価する。
我々は、私たちの発見に基づいて構築されたツールrcATTを紹介し、サイバー脅威レポートの自動分析をサポートするために、セキュリティコミュニティに自由に配布する。
論文 参考訳(メタデータ) (2020-04-29T16:45:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。