Tree semantic segmentation from aerial image time series
- URL: http://arxiv.org/abs/2407.13102v1
- Date: Thu, 18 Jul 2024 02:19:57 GMT
- Title: Tree semantic segmentation from aerial image time series
- Authors: Venkatesh Ramesh, Arthur Ouaknine, David Rolnick,
- Abstract summary: We perform semantic segmentation of trees using an aerial dataset image spanning over a year.
We compare models trained on single images versus those trained on time series to assess the impact of tree phenology on segmentation performances.
We leverage the hierarchical structure of tree species taxonomy by incorporating a custom loss function that refines predictions at three levels: species, genus, and higher-level taxa.
- Score: 24.14827064108217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Earth's forests play an important role in the fight against climate change, and are in turn negatively affected by it. Effective monitoring of different tree species is essential to understanding and improving the health and biodiversity of forests. In this work, we address the challenge of tree species identification by performing semantic segmentation of trees using an aerial image dataset spanning over a year. We compare models trained on single images versus those trained on time series to assess the impact of tree phenology on segmentation performances. We also introduce a simple convolutional block for extracting spatio-temporal features from image time series, enabling the use of popular pretrained backbones and methods. We leverage the hierarchical structure of tree species taxonomy by incorporating a custom loss function that refines predictions at three levels: species, genus, and higher-level taxa. Our findings demonstrate the superiority of our methodology in exploiting the time series modality and confirm that enriching labels using taxonomic information improves the semantic segmentation performance.
Related papers
- Mining Field Data for Tree Species Recognition at Scale [1.264462543503282]
We present a methodology to automatically mine species labels from public forest inventory data.
We identify tree instances in aerial imagery and match them with field data with close to zero human involvement.
arXiv Detail & Related papers (2024-08-28T14:25:35Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Trees are designed to learn the parameters of time series models.
By relating the parameters of a target time series model to features, Hyper-Trees also address the issue of parameter non-stationarity.
In this novel approach, the trees first generate informative representations from the input features, which a shallow network then maps to the target model parameters.
arXiv Detail & Related papers (2024-05-13T15:22:15Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
We argue that the current high-level dichotomy into bias- and variance-reduction prevalent in statistics is insufficient to understand tree ensembles.
We show that forests can improve upon trees by three distinct mechanisms that are usually implicitly entangled.
arXiv Detail & Related papers (2024-02-02T15:36:43Z) - Automated Identification of Tree Species by Bark Texture Classification
Using Convolutional Neural Networks [0.0]
Identification of tree species plays a key role in forestry related tasks like forest conservation, disease diagnosis and plant production.
There had been a debate regarding the part of the tree to be used for differentiation, whether it should be leaves, fruits, flowers or bark.
In this paper, a deep learning based approach is presented by leveraging the method of computer vision to classify 50 tree species.
arXiv Detail & Related papers (2022-10-03T13:09:50Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - Classification of Bark Beetle-Induced Forest Tree Mortality using Deep
Learning [7.032774322952993]
In this work, a deep learning based method is proposed to effectively classify different stages of bark beetle attacks at the individual tree level.
The proposed method uses RetinaNet architecture to train a shallow subnetwork for classifying the different attack stages of images captured by unmanned aerial vehicles (UAVs)
Experimental evaluations demonstrate the effectiveness of the proposed method by achieving an average accuracy of 98.95%, considerably outperforming the baseline method by approximately 10%.
arXiv Detail & Related papers (2022-07-15T00:16:25Z) - Tree Reconstruction using Topology Optimisation [0.685316573653194]
We present a general method for extracting the branch structure of trees from point cloud data.
We discuss the benefits and drawbacks of this novel approach to tree structure reconstruction.
Our method generates detailed and accurate tree structures in most cases.
arXiv Detail & Related papers (2022-05-26T07:08:32Z) - A hybrid convolutional neural network/active contour approach to
segmenting dead trees in aerial imagery [0.5276232626689566]
Dead trees are a key indicator of overall forest health, housing one-third of forest ecosystem biodiversity, and constitute 8%of the global carbon stocks.
We present a novel method to construct precise shape contours of dead trees from aerial photographs by combining established convolutional neural networks with a novel active contour model in an energy minimization framework.
arXiv Detail & Related papers (2021-12-06T00:53:51Z) - Intersection Regularization for Extracting Semantic Attributes [72.53481390411173]
We consider the problem of supervised classification, such that the features that the network extracts match an unseen set of semantic attributes.
For example, when learning to classify images of birds into species, we would like to observe the emergence of features that zoologists use to classify birds.
We propose training a neural network with discrete top-level activations, which is followed by a multi-layered perceptron (MLP) and a parallel decision tree.
arXiv Detail & Related papers (2021-03-22T14:32:44Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.