FocusDiffuser: Perceiving Local Disparities for Camouflaged Object Detection
- URL: http://arxiv.org/abs/2407.13133v1
- Date: Thu, 18 Jul 2024 03:45:12 GMT
- Title: FocusDiffuser: Perceiving Local Disparities for Camouflaged Object Detection
- Authors: Jianwei Zhao, Xin Li, Fan Yang, Qiang Zhai, Ao Luo, Zicheng Jiao, Hong Cheng,
- Abstract summary: We present a novel denoising diffusion model, namely FocusDiffuser, to investigate how generative models can enhance the detection and interpretation of camouflaged objects.
Our experiments demonstrate that FocusDiffuser, from a generative perspective, effectively addresses the challenge of camouflaged object detection.
- Score: 16.41770092932024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting objects seamlessly blended into their surroundings represents a complex task for both human cognitive capabilities and advanced artificial intelligence algorithms. Currently, the majority of methodologies for detecting camouflaged objects mainly focus on utilizing discriminative models with various unique designs. However, it has been observed that generative models, such as Stable Diffusion, possess stronger capabilities for understanding various objects in complex environments; Yet their potential for the cognition and detection of camouflaged objects has not been extensively explored. In this study, we present a novel denoising diffusion model, namely FocusDiffuser, to investigate how generative models can enhance the detection and interpretation of camouflaged objects. We believe that the secret to spotting camouflaged objects lies in catching the subtle nuances in details. Consequently, our FocusDiffuser innovatively integrates specialized enhancements, notably the Boundary-Driven LookUp (BDLU) module and Cyclic Positioning (CP) module, to elevate standard diffusion models, significantly boosting the detail-oriented analytical capabilities. Our experiments demonstrate that FocusDiffuser, from a generative perspective, effectively addresses the challenge of camouflaged object detection, surpassing leading models on benchmarks like CAMO, COD10K and NC4K.
Related papers
- Perceptual Piercing: Human Visual Cue-based Object Detection in Low Visibility Conditions [2.0409124291940826]
This study proposes a novel deep learning framework inspired by atmospheric scattering and human visual cortex mechanisms to enhance object detection under poor visibility scenarios such as fog, smoke, and haze.
The objective is to enhance the precision and reliability of detection systems under adverse environmental conditions.
arXiv Detail & Related papers (2024-10-02T04:03:07Z) - Open-World Object Detection with Instance Representation Learning [1.8749305679160366]
We propose a method to train an object detector that can both detect novel objects and extract semantically rich features in open-world conditions.
Our method learns a robust and generalizable feature space, outperforming other OWOD-based feature extraction methods.
arXiv Detail & Related papers (2024-09-24T13:13:34Z) - Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection [101.15777242546649]
Open vocabulary object detection (OVD) aims at seeking an optimal object detector capable of recognizing objects from both base and novel categories.
Recent advances leverage knowledge distillation to transfer insightful knowledge from pre-trained large-scale vision-language models to the task of object detection.
We present a novel OVD framework termed LBP to propose learning background prompts to harness explored implicit background knowledge.
arXiv Detail & Related papers (2024-06-01T17:32:26Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing.
We propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC)
Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects.
arXiv Detail & Related papers (2024-03-20T08:15:18Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection [70.11264880907652]
Recent object (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios.
We propose an effective unified collaborative pyramid network that mimics human behavior when observing vague images and camouflaged zooming in and out.
Our framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks.
arXiv Detail & Related papers (2023-10-31T06:11:23Z) - Camouflaged Image Synthesis Is All You Need to Boost Camouflaged
Detection [65.8867003376637]
We propose a framework for synthesizing camouflage data to enhance the detection of camouflaged objects in natural scenes.
Our approach employs a generative model to produce realistic camouflage images, which can be used to train existing object detection models.
Our framework outperforms the current state-of-the-art method on three datasets.
arXiv Detail & Related papers (2023-08-13T06:55:05Z) - Diffusion Model for Camouflaged Object Detection [2.592600158870236]
We propose a diffusion-based framework for camouflaged object detection, termed diffCOD.
The proposed method achieves favorable performance compared to the existing 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-08-01T05:50:33Z) - CamDiff: Camouflage Image Augmentation via Diffusion Model [83.35960536063857]
CamDiff is a novel approach to synthesize salient objects in camouflaged scenes.
We leverage the latent diffusion model to synthesize salient objects in camouflaged scenes.
Our approach enables flexible editing and efficient large-scale dataset generation at a low cost.
arXiv Detail & Related papers (2023-04-11T19:37:47Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Towards Accurate Camouflaged Object Detection with Mixture Convolution and Interactive Fusion [45.45231015502287]
We propose a novel deep learning based COD approach, which integrates the large receptive field and effective feature fusion into a unified framework.
Our method detects camouflaged objects with an effective fusion strategy, which aggregates the rich context information from a large receptive field.
arXiv Detail & Related papers (2021-01-14T16:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.