Attenuation-Aware Weighted Optical Flow with Medium Transmission Map for Learning-based Visual Odometry in Underwater terrain
- URL: http://arxiv.org/abs/2407.13159v1
- Date: Thu, 18 Jul 2024 05:00:15 GMT
- Title: Attenuation-Aware Weighted Optical Flow with Medium Transmission Map for Learning-based Visual Odometry in Underwater terrain
- Authors: Bach Nguyen Gia, Chanh Minh Tran, Kamioka Eiji, Tan Phan Xuan,
- Abstract summary: This paper addresses the challenge of improving learning-based monocular visual odometry (VO) in underwater environments.
The novel wflow-TartanVO is introduced, enhancing the accuracy of VO systems for autonomous underwater vehicles (AUVs)
Evaluation of different real-world underwater datasets demonstrates the outperformance of wflow-TartanVO over baseline VO methods.
- Score: 0.03749861135832072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the challenge of improving learning-based monocular visual odometry (VO) in underwater environments by integrating principles of underwater optical imaging to manipulate optical flow estimation. Leveraging the inherent properties of underwater imaging, the novel wflow-TartanVO is introduced, enhancing the accuracy of VO systems for autonomous underwater vehicles (AUVs). The proposed method utilizes a normalized medium transmission map as a weight map to adjust the estimated optical flow for emphasizing regions with lower degradation and suppressing uncertain regions affected by underwater light scattering and absorption. wflow-TartanVO does not require fine-tuning of pre-trained VO models, thus promoting its adaptability to different environments and camera models. Evaluation of different real-world underwater datasets demonstrates the outperformance of wflow-TartanVO over baseline VO methods, as evidenced by the considerably reduced Absolute Trajectory Error (ATE). The implementation code is available at: https://github.com/bachzz/wflow-TartanVO
Related papers
- FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
We introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs)
Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths.
We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-09-25T03:54:01Z) - Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
Flow image super-resolution (FISR) aims at recovering high-resolution turbulent velocity fields from low-resolution flow images.
Existing FISR methods mainly process the flow images in natural image patterns.
We propose the first flow visual property-informed FISR algorithm.
arXiv Detail & Related papers (2024-01-29T06:48:16Z) - FlowDA: Unsupervised Domain Adaptive Framework for Optical Flow
Estimation [6.122542233250026]
This paper introduces FlowDA, an unsupervised domain adaptive (UDA) framework for optical flow estimation.
FlowDA outperforms state-of-the-art unsupervised optical flow estimation method SMURF by 21.6%, real optical flow dataset generation method MPI-Flow by 27.8%, and optical flow estimation adaptive method FlowSupervisor by 30.9%.
arXiv Detail & Related papers (2023-12-28T12:51:48Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - An Efficient Detection and Control System for Underwater Docking using
Machine Learning and Realistic Simulation: A Comprehensive Approach [5.039813366558306]
This work compares different deep-learning architectures to perform underwater docking detection and classification.
A Generative Adversarial Network (GAN) is used to do image-to-image translation, converting the Gazebo simulation image into an underwater-looking image.
Results show an improvement of 20% in the high turbidity scenarios regardless of the underwater currents.
arXiv Detail & Related papers (2023-11-02T18:10:20Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - WaterFlow: Heuristic Normalizing Flow for Underwater Image Enhancement
and Beyond [52.27796682972484]
Existing underwater image enhancement methods mainly focus on image quality improvement, ignoring the effect on practice.
We propose a normalizing flow for detection-driven underwater image enhancement, dubbed WaterFlow.
Considering the differentiability and interpretability, we incorporate the prior into the data-driven mapping procedure.
arXiv Detail & Related papers (2023-08-02T04:17:35Z) - Semi-supervised Underwater Image Enhancement Using A Physics-Aware Triple-Stream Network [6.7932860553262415]
We leverage both the physics-based Image Formation Model (IFM) and deep learning techniques for Underwater Image Enhancement (UIE)
PATS-UIENet comprises a Direct Signal Transmission Estimation Steam (D-Stream), a Backscatter Signal Transmission Estimation Steam (B-Stream) and an Ambient Light Estimation Stream (A-Stream)
We also adopt an IFM-inspired semi-supervised learning framework, which exploits both the labeled and unlabeled images, to address the issue of insufficient data.
arXiv Detail & Related papers (2023-07-21T10:10:18Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
We propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images.
A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed.
Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method.
arXiv Detail & Related papers (2020-02-20T07:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.