Learned HDR Image Compression for Perceptually Optimal Storage and Display
- URL: http://arxiv.org/abs/2407.13179v1
- Date: Thu, 18 Jul 2024 05:35:57 GMT
- Title: Learned HDR Image Compression for Perceptually Optimal Storage and Display
- Authors: Peibei Cao, Haoyu Chen, Jingzhe Ma, Yu-Chieh Yuan, Zhiyong Xie, Xin Xie, Haiqing Bai, Kede Ma,
- Abstract summary: High dynamic range capture and display have seen significant growth in popularity driven by the advancements in technology and increasing consumer demand for superior image quality.
As a result, HDR image compression is crucial to fully realize the benefits of HDR imaging without suffering from large file sizes and inefficient data handling.
In this work, we initiate efforts towards end-to-end optimized HDR image compression for perceptually optimal storage and display.
- Score: 21.772946547671122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High dynamic range (HDR) capture and display have seen significant growth in popularity driven by the advancements in technology and increasing consumer demand for superior image quality. As a result, HDR image compression is crucial to fully realize the benefits of HDR imaging without suffering from large file sizes and inefficient data handling. Conventionally, this is achieved by introducing a residual/gain map as additional metadata to bridge the gap between HDR and low dynamic range (LDR) images, making the former compatible with LDR image codecs but offering suboptimal rate-distortion performance. In this work, we initiate efforts towards end-to-end optimized HDR image compression for perceptually optimal storage and display. Specifically, we learn to compress an HDR image into two bitstreams: one for generating an LDR image to ensure compatibility with legacy LDR displays, and another as side information to aid HDR image reconstruction from the output LDR image. To measure the perceptual quality of output HDR and LDR images, we use two recently proposed image distortion metrics, both validated against human perceptual data of image quality and with reference to the uncompressed HDR image. Through end-to-end optimization for rate-distortion performance, our method dramatically improves HDR and LDR image quality at all bit rates.
Related papers
- HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting [76.5908492298286]
Existing HDR NVS methods are mainly based on NeRF.
They suffer from long training time and slow inference speed.
We propose a new framework, High Dynamic Range Gaussian Splatting (-GS)
arXiv Detail & Related papers (2024-05-24T00:46:58Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
Recent Diffusion Models (DMs) have been introduced in HDR imaging field.
DMs require extensive iterations with large models to estimate entire images.
We propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging.
arXiv Detail & Related papers (2024-04-01T01:32:11Z) - HistoHDR-Net: Histogram Equalization for Single LDR to HDR Image
Translation [12.45632443397018]
High Dynamic Range ( HDR) imaging aims to replicate the high visual quality and clarity of real-world scenes.
The literature offers various data-driven methods for HDR image reconstruction from Low Dynamic Range (LDR) counterparts.
A common limitation of these approaches is missing details in regions of the reconstructed HDR images.
We propose a simple and effective method, Histo-Net, to recover the fine details.
arXiv Detail & Related papers (2024-02-08T20:14:46Z) - Perceptual Assessment and Optimization of HDR Image Rendering [25.72195917050074]
High dynamic range rendering has the ability to faithfully reproduce the wide luminance ranges in natural scenes.
Existing quality models are mostly designed for low dynamic range (LDR) images, and do not align well with human perception of HDR image quality.
We propose a family of HDR quality metrics, in which the key step is employing a simple inverse display model to decompose an HDR image into a stack of LDR images with varying exposures.
arXiv Detail & Related papers (2023-10-19T16:32:18Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Self is a self-supervised reconstruction method that only requires dynamic multi-exposure images during training.
Self achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones.
arXiv Detail & Related papers (2023-10-03T07:10:49Z) - Efficient HDR Reconstruction from Real-World Raw Images [16.54071503000866]
High-definition screens on edge devices stimulate a strong demand for efficient high dynamic range ( HDR) algorithms.
Many existing HDR methods either deliver unsatisfactory results or consume too much computational and memory resources.
In this work, we discover an excellent opportunity for HDR reconstructing directly from raw images and investigating novel neural network structures.
arXiv Detail & Related papers (2023-06-17T10:10:15Z) - HDR Video Reconstruction with a Large Dynamic Dataset in Raw and sRGB
Domains [23.309488653045026]
High dynamic range ( HDR) video reconstruction is attracting more and more attention due to the superior visual quality compared with those of low dynamic range (LDR) videos.
There are still no real LDR- pairs for dynamic scenes due to the difficulty in capturing LDR- frames simultaneously.
In this work, we propose to utilize a staggered sensor to capture two alternate exposure images simultaneously, which are then fused into an HDR frame in both raw and sRGB domains.
arXiv Detail & Related papers (2023-04-10T11:59:03Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
We present the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner.
The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images.
Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows.
arXiv Detail & Related papers (2022-11-22T15:42:08Z) - A Two-stage Deep Network for High Dynamic Range Image Reconstruction [0.883717274344425]
This study tackles the challenges of single-shot LDR to HDR mapping by proposing a novel two-stage deep network.
Notably, our proposed method aims to reconstruct an HDR image without knowing hardware information, including camera response function (CRF) and exposure settings.
arXiv Detail & Related papers (2021-04-19T15:19:17Z) - Beyond Visual Attractiveness: Physically Plausible Single Image HDR
Reconstruction for Spherical Panoramas [60.24132321381606]
We introduce the physical illuminance constraints to our single-shot HDR reconstruction framework.
Our method can generate HDRs which are not only visually appealing but also physically plausible.
arXiv Detail & Related papers (2021-03-24T01:51:19Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.