論文の概要: Improving Out-of-Distribution Generalization of Trajectory Prediction for Autonomous Driving via Polynomial Representations
- arxiv url: http://arxiv.org/abs/2407.13431v1
- Date: Thu, 18 Jul 2024 12:00:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 15:30:45.995989
- Title: Improving Out-of-Distribution Generalization of Trajectory Prediction for Autonomous Driving via Polynomial Representations
- Title(参考訳): 多項式表現による自律走行における軌道予測のアウト・オブ・ディストリビューション一般化の改善
- Authors: Yue Yao, Shengchao Yan, Daniel Goehring, Wolfram Burgard, Joerg Reichardt,
- Abstract要約: 本稿では,2つの大規模動作データセット間でデータセットと予測タスクを均質化するOoDテストプロトコルを提案する。
モデルのサイズ、トレーニングの労力、推論時間を大幅に小さくすることで、IDテストのSotAに近いパフォーマンスに達し、OoDテストの堅牢性を大幅に向上します。
- 参考スコア(独自算出の注目度): 16.856874154363588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robustness against Out-of-Distribution (OoD) samples is a key performance indicator of a trajectory prediction model. However, the development and ranking of state-of-the-art (SotA) models are driven by their In-Distribution (ID) performance on individual competition datasets. We present an OoD testing protocol that homogenizes datasets and prediction tasks across two large-scale motion datasets. We introduce a novel prediction algorithm based on polynomial representations for agent trajectory and road geometry on both the input and output sides of the model. With a much smaller model size, training effort, and inference time, we reach near SotA performance for ID testing and significantly improve robustness in OoD testing. Within our OoD testing protocol, we further study two augmentation strategies of SotA models and their effects on model generalization. Highlighting the contrast between ID and OoD performance, we suggest adding OoD testing to the evaluation criteria of trajectory prediction models.
- Abstract(参考訳): OoD(Out-of-Distribution)サンプルに対するロバスト性は、軌道予測モデルの重要な性能指標である。
しかし、最先端(SotA)モデルの開発とランキングは、個々の競合データセット上でのID(In-Distribution)パフォーマンスによって駆動される。
本稿では,2つの大規模動作データセット間でデータセットと予測タスクを均質化するOoDテストプロトコルを提案する。
本稿では,エージェント軌道の多項式表現と,入力側と出力側の両方の道路形状に基づく新しい予測アルゴリズムを提案する。
モデルのサイズ、トレーニングの労力、推論時間を大幅に小さくすることで、IDテストのSotAに近いパフォーマンスに達し、OoDテストの堅牢性を大幅に向上します。
OoDテストプロトコルでは、SotAモデルの2つの拡張戦略とモデル一般化に対するそれらの効果についてさらに検討する。
軌道予測モデルの評価基準にOoDテストを追加することを提案する。
関連論文リスト
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - OMNIINPUT: A Model-centric Evaluation Framework through Output
Distribution [31.00645110294068]
我々は,AI/MLモデルの予測品質を,可能なすべての入力に対して評価するモデル中心評価フレームワークOmniInputを提案する。
提案手法では, 学習モデルの入力と出力分布を求めるために, 効率的なサンプリング器を用いる。
実験により,OmniInputはモデル間のよりきめ細かい比較を可能にした。
論文 参考訳(メタデータ) (2023-12-06T04:53:12Z) - Conditional Unscented Autoencoders for Trajectory Prediction [13.121738145903532]
CVAEはADの軌道予測において最も広く使われているモデルの一つである。
CVAEの基礎となるVAEの空間における最近の進歩を利用して,サンプリング手順の簡単な変更が性能に大きな恩恵をもたらすことを示す。
CelebAデータセット上の画像モデリングのタスクだけでなく、InterAction予測データセット上で評価することで、我々のモデルの幅広い適用性を示す。
論文 参考訳(メタデータ) (2023-10-30T18:59:32Z) - EquiDiff: A Conditional Equivariant Diffusion Model For Trajectory
Prediction [11.960234424309265]
本研究では,将来の車両軌道予測のための深部生成モデルであるEquiDiffを提案する。
EquiDiffは、過去の情報とランダムなガウスノイズを組み込んで将来の軌跡を生成する条件拡散モデルに基づいている。
以上の結果から,EquiDiffは短期予測では他のベースラインモデルよりも優れているが,長期予測では誤差が若干高いことがわかった。
論文 参考訳(メタデータ) (2023-08-12T13:17:09Z) - A positive feedback method based on F-measure value for Salient Object
Detection [1.9249287163937976]
本稿では,SODに対するF値に基づく正のフィードバック手法を提案する。
提案手法は,画像を検出して既存のモデルに入力し,それぞれの予測マップを取得する。
5つの公開データセットに対する実験結果から,提案手法の正のフィードバックは,5つの評価指標において最新の12の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-04-28T04:05:13Z) - IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence
Car-Following Trajectory Prediction [24.94160059351764]
ほとんどの自動車追従モデルは生成的であり、最後のステップの速度、位置、加速度の入力のみを考慮する。
2つの独立したエンコーダと、次の軌道を逐次予測できる自己アテンションデコーダを備えた新しい構造を実装した。
シミュレーションとNGSIMデータセットの複数の設定による数値実験により、IMM-Followerは予測性能を向上させることができることが示された。
論文 参考訳(メタデータ) (2022-10-20T02:24:27Z) - TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision [70.05605071885914]
本研究では,単体テストサンプルに適用可能な自己教師付きトレーニングアルゴリズムSwaVの新たな改良を提案する。
ベンチマークデータセットCIFAR10-Cにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-05-18T05:43:06Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
我々は,18の事前学習トランスフォーマーモデルから予測した29のデータセットを個別のテスト例で評価した。
Quoref、HellaSwag、MC-TACOは最先端のモデルを区別するのに最適である。
また、QAMRやSQuAD2.0のようなQAデータセットに使用されるスパン選択タスク形式は、強いモデルと弱いモデルとの差別化に有効である。
論文 参考訳(メタデータ) (2021-06-01T22:33:53Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。