論文の概要: ASTRA: A Scene-aware TRAnsformer-based model for trajectory prediction
- arxiv url: http://arxiv.org/abs/2501.09878v1
- Date: Thu, 16 Jan 2025 23:28:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:42.832512
- Title: ASTRA: A Scene-aware TRAnsformer-based model for trajectory prediction
- Title(参考訳): ASTRA:軌道予測のためのシーン認識トランスフォーマーベースモデル
- Authors: Izzeddin Teeti, Aniket Thomas, Munish Monga, Sachin Kumar, Uddeshya Singh, Andrew Bradley, Biplab Banerjee, Fabio Cuzzolin,
- Abstract要約: ASTRA (A Scene-aware TRAnsformer based model for trajectory prediction) は軽量な歩行者軌道予測モデルである。
我々は、U-Netベースの特徴抽出器を用いて、その潜在ベクトル表現を用いて、シーン表現をキャプチャし、グラフ対応トランスフォーマーエンコーダを用いて、ソーシャルインタラクションをキャプチャする。
- 参考スコア(独自算出の注目度): 15.624698974735654
- License:
- Abstract: We present ASTRA (A} Scene-aware TRAnsformer-based model for trajectory prediction), a light-weight pedestrian trajectory forecasting model that integrates the scene context, spatial dynamics, social inter-agent interactions and temporal progressions for precise forecasting. We utilised a U-Net-based feature extractor, via its latent vector representation, to capture scene representations and a graph-aware transformer encoder for capturing social interactions. These components are integrated to learn an agent-scene aware embedding, enabling the model to learn spatial dynamics and forecast the future trajectory of pedestrians. The model is designed to produce both deterministic and stochastic outcomes, with the stochastic predictions being generated by incorporating a Conditional Variational Auto-Encoder (CVAE). ASTRA also proposes a simple yet effective weighted penalty loss function, which helps to yield predictions that outperform a wide array of state-of-the-art deterministic and generative models. ASTRA demonstrates an average improvement of 27%/10% in deterministic/stochastic settings on the ETH-UCY dataset, and 26% improvement on the PIE dataset, respectively, along with seven times fewer parameters than the existing state-of-the-art model (see Figure 1). Additionally, the model's versatility allows it to generalize across different perspectives, such as Bird's Eye View (BEV) and Ego-Vehicle View (EVV).
- Abstract(参考訳): AsTRA(A} Scene-aware TRAnsformer-based model for trajectory predicting model)について述べる。
我々はU-Netベースの特徴抽出器を用いて、その潜在ベクトル表現を用いてシーン表現をキャプチャし、ソーシャルインタラクションをキャプチャするためのグラフ対応トランスフォーマーエンコーダを開発した。
これらのコンポーネントはエージェントシーンを意識した埋め込みを学習するために統合されており、モデルが空間力学を学習し、歩行者の将来の軌道を予測することができる。
このモデルは、条件付き変分オートエンコーダ(CVAE)を組み込んだ確率予測によって、決定論的および確率的結果の両方を生成するように設計されている。
ASTRAはまた、単純だが効果的に重み付けされたペナルティ損失関数を提案し、これは、最先端の決定論的および生成的モデルよりも優れた予測を得るのに役立つ。
ASTRAは、ETH-UCYデータセットにおける決定論的/確率的設定における平均27%/10%の改善と、PIEデータセットでの26%の改善を、既存の最先端モデルよりも7倍少ないパラメータで示している(図1参照)。
さらに、モデルの汎用性により、Bird's Eye View(BEV)やEgo-Vehicle View(EVV)など、さまざまな視点で一般化することができる。
関連論文リスト
- Improving Out-of-Distribution Generalization of Trajectory Prediction for Autonomous Driving via Polynomial Representations [16.856874154363588]
本稿では,2つの大規模動作データセット間でデータセットと予測タスクを均質化するOoDテストプロトコルを提案する。
モデルのサイズ、トレーニングの労力、推論時間を大幅に小さくすることで、IDテストのSotAに近いパフォーマンスに達し、OoDテストの堅牢性を大幅に向上します。
論文 参考訳(メタデータ) (2024-07-18T12:00:32Z) - S^2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR [50.435592120607815]
外科手術のシーングラフ生成(SGG)は、手術室(OR)におけるホモロジー認知知能の増強に不可欠である
これまでの研究は主に多段階学習に依存しており、生成したセマンティックシーングラフはポーズ推定とオブジェクト検出を伴う中間プロセスに依存している。
本研究では,S2Former-OR(S2Former-OR)と呼ばれるORにおけるSGGのための新しいシングルステージバイモーダルトランスフォーマフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-22T11:40:49Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Conditional Unscented Autoencoders for Trajectory Prediction [13.121738145903532]
CVAEはADの軌道予測において最も広く使われているモデルの一つである。
CVAEの基礎となるVAEの空間における最近の進歩を利用して,サンプリング手順の簡単な変更が性能に大きな恩恵をもたらすことを示す。
CelebAデータセット上の画像モデリングのタスクだけでなく、InterAction予測データセット上で評価することで、我々のモデルの幅広い適用性を示す。
論文 参考訳(メタデータ) (2023-10-30T18:59:32Z) - ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation [0.0]
ADAPTはダイナミックウェイトラーニングによってシーン内の全てのエージェントの軌道を共同で予測するための新しいアプローチである。
提案手法は, 単一エージェントと複数エージェントの設定において, 最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-26T13:41:51Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDARの生成した占有グリッドマップ(L-OGM)は、頑丈な鳥の視線シーンを表現している。
本稿では,学習空間内での表現学習と予測という,占有率予測を分離する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-03T22:04:00Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction [5.346782918364054]
我々は,より効率的かつ正確な軌道予測を支援するために,新しいCNNベースの時空間グラフフレームワークGraphCNTを提案する。
従来のモデルとは対照的に,我々のモデルにおける空間的・時間的モデリングは各局所時間ウィンドウ内で計算される。
本モデルは,様々な軌道予測ベンチマークデータセットの最先端モデルと比較して,効率と精度の両面で優れた性能を実現する。
論文 参考訳(メタデータ) (2020-03-16T12:56:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。