論文の概要: Reducing Barriers to the Use of Marginalised Music Genres in AI
- arxiv url: http://arxiv.org/abs/2407.13439v1
- Date: Thu, 18 Jul 2024 12:10:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 15:30:45.983058
- Title: Reducing Barriers to the Use of Marginalised Music Genres in AI
- Title(参考訳): AIにおけるMarginalized Music Genresの使用に対する障壁の低減
- Authors: Nick Bryan-Kinns, Zijin Li,
- Abstract要約: このプロジェクトの目的は、AIモデルで疎外された音楽のジャンルを使用する際の障壁を減らすことに関連する、eXplainable AI(XAI)の課題と機会を探ることである。
特定されたXAIの機会には、AIモデルの透明性とコントロールの改善、AIモデルの倫理とバイアスの説明、バイアスを減らすために小さなデータセットで大規模モデルの微調整、AIモデルによるスタイル移行の機会の説明などが含まれる。
私たちは現在、グローバルなInternational Responsible AI Musicコミュニティをまとめて、私たちのネットワークへの参加を招待するために、このプロジェクトを構築しています。
- 参考スコア(独自算出の注目度): 7.140590440016289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI systems for high quality music generation typically rely on extremely large musical datasets to train the AI models. This creates barriers to generating music beyond the genres represented in dominant datasets such as Western Classical music or pop music. We undertook a 4 month international research project summarised in this paper to explore the eXplainable AI (XAI) challenges and opportunities associated with reducing barriers to using marginalised genres of music with AI models. XAI opportunities identified included topics of improving transparency and control of AI models, explaining the ethics and bias of AI models, fine tuning large models with small datasets to reduce bias, and explaining style-transfer opportunities with AI models. Participants in the research emphasised that whilst it is hard to work with small datasets such as marginalised music and AI, such approaches strengthen cultural representation of underrepresented cultures and contribute to addressing issues of bias of deep learning models. We are now building on this project to bring together a global International Responsible AI Music community and invite people to join our network.
- Abstract(参考訳): 高品質の音楽生成のためのAIシステムは、通常、AIモデルをトレーニングするために非常に大きな音楽データセットに依存します。
これにより、西洋古典音楽やポップ音楽のような支配的なデータセットに代表されるジャンルを超えて音楽を生み出す障壁が生じる。
本稿では,eXplainable AI(XAI)の課題と,AIモデルによる音楽の限界ジャンルの使用に対する障壁の低減に関連する機会を探るため,4ヶ月の国際研究プロジェクトを要約した。
特定されたXAIの機会には、AIモデルの透明性とコントロールの改善、AIモデルの倫理とバイアスの説明、バイアスを減らすために小さなデータセットで大規模モデルの微調整、AIモデルによるスタイル移行の機会の説明などが含まれる。
この研究の参加者は、疎外された音楽やAIのような小さなデータセットを扱うのは難しいが、そのようなアプローチは、表現されていない文化の文化的表現を強化し、深層学習モデルのバイアスの問題への対処に寄与している、と強調した。
私たちは現在、グローバルなInternational Responsible AI Musicコミュニティをまとめて、私たちのネットワークへの参加を招待するために、このプロジェクトを構築しています。
関連論文リスト
- On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - Computational Copyright: Towards A Royalty Model for Music Generative AI [8.131016672512835]
生成的AIは、特に音楽業界において、著作権問題に拍車をかけた。
本稿では,これらの課題の経済的側面に焦点をあて,著作権分野における経済的影響が中心的な課題となっていることを強調する。
我々は、AI音楽生成プラットフォーム上での収益分配のための実行可能なロイヤリティモデルを提案する。
論文 参考訳(メタデータ) (2023-12-11T18:57:20Z) - Exploring Variational Auto-Encoder Architectures, Configurations, and
Datasets for Generative Music Explainable AI [7.391173255888337]
音楽と芸術のための生成AIモデルは、ますます複雑で理解しづらい。
生成AIモデルをより理解しやすいものにするためのアプローチの1つは、生成AIモデルに少数の意味的に意味のある属性を課すことである。
本稿では,変分自動エンコーダモデル(MeasureVAEとAdversarialVAE)の異なる組み合わせが音楽生成性能に与える影響について,系統的な検討を行った。
論文 参考訳(メタデータ) (2023-11-14T17:27:30Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - An Autoethnographic Exploration of XAI in Algorithmic Composition [7.775986202112564]
本稿では,アイルランド音楽で学習した潜在次元の解釈可能な測度VeE生成音楽XAIモデルを用いた自己エスノグラフィー研究を紹介する。
音楽作成ワークフローの探索的性質は、生成モデル自体の特徴ではなく、トレーニングデータセットの音楽的特徴を前提としていることが示唆されている。
論文 参考訳(メタデータ) (2023-08-11T12:03:17Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Human in the Loop for Machine Creativity [0.0]
我々は、創造的アプリケーションのための既存のHuman-in-the-loop(HITL)アプローチを概念化する。
モデル,インターフェース,機械の創造性に対する長期的影響について検討し,考察する。
テキスト,視覚,音,その他の情報を結合し,人や環境の自動解析を行うマルチモーダルHITLプロセスを提案する。
論文 参考訳(メタデータ) (2021-10-07T15:42:18Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - AI Song Contest: Human-AI Co-Creation in Songwriting [8.399688944263843]
音楽/開発者チーム13チーム,合計61人のユーザが,AIで楽曲を共同制作する上で必要なものについて報告する。
これらの課題のいくつかを克服するために、AIの既存の特徴をどのように活用し、再利用したかを示します。
発見は、より分解可能で、操縦可能で、解釈可能で、適応的な、機械学習による音楽インターフェースを設計する必要があることを反映している。
論文 参考訳(メタデータ) (2020-10-12T01:27:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。