DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays
- URL: http://arxiv.org/abs/2407.13545v1
- Date: Thu, 18 Jul 2024 14:20:04 GMT
- Title: DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays
- Authors: Xuhui Liu, Zhi Qiao, Runkun Liu, Hong Li, Juan Zhang, Xiantong Zhen, Zhen Qian, Baochang Zhang,
- Abstract summary: We propose DiffuX2CT, which models CT reconstruction from ultra-sparse X-rays as a conditional diffusion process.
By doing so, DiffuX2CT achieves structure-controllable reconstruction, which enables 3D structural information to be recovered from 2D X-rays.
As an extra contribution, we collect a real-world lumbar CT dataset, called LumbarV, as a new benchmark to verify the clinical significance and performance of CT reconstruction from X-rays.
- Score: 41.393567374399524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computed tomography (CT) is widely utilized in clinical settings because it delivers detailed 3D images of the human body. However, performing CT scans is not always feasible due to radiation exposure and limitations in certain surgical environments. As an alternative, reconstructing CT images from ultra-sparse X-rays offers a valuable solution and has gained significant interest in scientific research and medical applications. However, it presents great challenges as it is inherently an ill-posed problem, often compromised by artifacts resulting from overlapping structures in X-ray images. In this paper, we propose DiffuX2CT, which models CT reconstruction from orthogonal biplanar X-rays as a conditional diffusion process. DiffuX2CT is established with a 3D global coherence denoising model with a new, implicit conditioning mechanism. We realize the conditioning mechanism by a newly designed tri-plane decoupling generator and an implicit neural decoder. By doing so, DiffuX2CT achieves structure-controllable reconstruction, which enables 3D structural information to be recovered from 2D X-rays, therefore producing faithful textures in CT images. As an extra contribution, we collect a real-world lumbar CT dataset, called LumbarV, as a new benchmark to verify the clinical significance and performance of CT reconstruction from X-rays. Extensive experiments on this dataset and three more publicly available datasets demonstrate the effectiveness of our proposal.
Related papers
- TomoGRAF: A Robust and Generalizable Reconstruction Network for Single-View Computed Tomography [3.1209855614927275]
Traditional analytical/iterative CT reconstruction algorithms require hundreds of angular data samplings.
We develop a novel TomoGRAF framework incorporating the unique X-ray transportation physics to reconstruct high-quality 3D volumes.
arXiv Detail & Related papers (2024-11-12T20:07:59Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - SdCT-GAN: Reconstructing CT from Biplanar X-Rays with Self-driven
Generative Adversarial Networks [6.624839896733912]
This paper presents a new self-driven generative adversarial network model (SdCT-GAN) for reconstruction of 3D CT images.
It is motivated to pay more attention to image details by introducing a novel auto-encoder structure in the discriminator.
LPIPS evaluation metric is adopted that can quantitatively evaluate the fine contours and textures of reconstructed images better than the existing ones.
arXiv Detail & Related papers (2023-09-10T08:16:02Z) - XTransCT: Ultra-Fast Volumetric CT Reconstruction using Two Orthogonal
X-Ray Projections for Image-guided Radiation Therapy via a Transformer
Network [8.966238080182263]
We introduce a novel Transformer architecture, termed XTransCT, to facilitate real-time reconstruction of CT images from two-dimensional X-ray images.
Our findings indicate that our algorithm surpasses other methods in image quality, structural precision, and generalizability.
In comparison to previous 3D convolution-based approaches, we note a substantial speed increase of approximately 300 %, achieving 44 ms per 3D image reconstruction.
arXiv Detail & Related papers (2023-05-31T07:41:10Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Perspective Projection-Based 3D CT Reconstruction from Biplanar X-rays [32.98966469644061]
We propose PerX2CT, a novel CT reconstruction framework from X-ray.
Our proposed method provides a different combination of features for each coordinate which implicitly allows the model to obtain information about the 3D location.
arXiv Detail & Related papers (2023-03-09T14:45:25Z) - X-Ray2EM: Uncertainty-Aware Cross-Modality Image Reconstruction from
X-Ray to Electron Microscopy in Connectomics [55.6985304397137]
We propose an uncertainty-aware 3D reconstruction model that translates X-ray images to EM-like images with enhanced membrane segmentation quality.
This shows its potential for developing simpler, faster, and more accurate X-ray based connectomics pipelines.
arXiv Detail & Related papers (2023-03-02T00:52:41Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware
CT-Projections from a Single X-ray [14.10611608681131]
Excessive ionising radiation can lead to deterministic and harmful effects on the body.
This paper proposes a Deep Learning model that learns to reconstruct CT projections from a few or even a single-view X-ray.
arXiv Detail & Related papers (2022-02-02T13:25:23Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
A radiograph visualizes the internal anatomy of a patient through the use of X-ray, which projects 3D information onto a 2D plane.
To the best of our knowledge, this is the first work on radiograph view synthesis.
We show that by gaining an understanding of radiography in 3D space, our method can be applied to radiograph bone extraction and suppression without groundtruth bone labels.
arXiv Detail & Related papers (2020-12-04T05:08:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.