XTransCT: Ultra-Fast Volumetric CT Reconstruction using Two Orthogonal
X-Ray Projections for Image-guided Radiation Therapy via a Transformer
Network
- URL: http://arxiv.org/abs/2305.19621v2
- Date: Thu, 23 Nov 2023 16:37:25 GMT
- Title: XTransCT: Ultra-Fast Volumetric CT Reconstruction using Two Orthogonal
X-Ray Projections for Image-guided Radiation Therapy via a Transformer
Network
- Authors: Chulong Zhang, Lin Liu, Jingjing Dai, Xuan Liu, Wenfeng He, Yinping
Chan, Yaoqin Xie, Feng Chi, and Xiaokun Liang
- Abstract summary: We introduce a novel Transformer architecture, termed XTransCT, to facilitate real-time reconstruction of CT images from two-dimensional X-ray images.
Our findings indicate that our algorithm surpasses other methods in image quality, structural precision, and generalizability.
In comparison to previous 3D convolution-based approaches, we note a substantial speed increase of approximately 300 %, achieving 44 ms per 3D image reconstruction.
- Score: 8.966238080182263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computed tomography (CT) scans offer a detailed, three-dimensional
representation of patients' internal organs. However, conventional CT
reconstruction techniques necessitate acquiring hundreds or thousands of x-ray
projections through a complete rotational scan of the body, making navigation
or positioning during surgery infeasible. In image-guided radiation therapy, a
method that reconstructs ultra-sparse X-ray projections into CT images, we can
exploit the substantially reduced radiation dose and minimize equipment burden
for localization and navigation. In this study, we introduce a novel
Transformer architecture, termed XTransCT, devised to facilitate real-time
reconstruction of CT images from two-dimensional X-ray images. We assess our
approach regarding image quality and structural reliability using a dataset of
fifty patients, supplied by a hospital, as well as the larger public dataset
LIDC-IDRI, which encompasses thousands of patients. Additionally, we validated
our algorithm's generalizability on the LNDb dataset. Our findings indicate
that our algorithm surpasses other methods in image quality, structural
precision, and generalizability. Moreover, in comparison to previous 3D
convolution-based approaches, we note a substantial speed increase of
approximately 300 %, achieving 44 ms per 3D image reconstruction.
Related papers
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - Reconstruct Spine CT from Biplanar X-Rays via Diffusion Learning [26.866131691476255]
Intraoperative CT imaging serves as a crucial resource for surgical guidance; however, it may not always be readily accessible or practical to implement.
In this paper, we introduce an innovative method for 3D CT reconstruction utilizing biplanar X-rays.
arXiv Detail & Related papers (2024-08-19T06:34:01Z) - DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays [41.393567374399524]
We propose DiffuX2CT, which models CT reconstruction from ultra-sparse X-rays as a conditional diffusion process.
By doing so, DiffuX2CT achieves structure-controllable reconstruction, which enables 3D structural information to be recovered from 2D X-rays.
As an extra contribution, we collect a real-world lumbar CT dataset, called LumbarV, as a new benchmark to verify the clinical significance and performance of CT reconstruction from X-rays.
arXiv Detail & Related papers (2024-07-18T14:20:04Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - XProspeCT: CT Volume Generation from Paired X-Rays [0.0]
We build on previous research to convert X-ray images into simulated CT volumes.
Model variations include UNet architectures, custom connections, activation functions, loss functions, and a novel back projection approach.
arXiv Detail & Related papers (2024-02-11T21:57:49Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Perspective Projection-Based 3D CT Reconstruction from Biplanar X-rays [32.98966469644061]
We propose PerX2CT, a novel CT reconstruction framework from X-ray.
Our proposed method provides a different combination of features for each coordinate which implicitly allows the model to obtain information about the 3D location.
arXiv Detail & Related papers (2023-03-09T14:45:25Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware
CT-Projections from a Single X-ray [14.10611608681131]
Excessive ionising radiation can lead to deterministic and harmful effects on the body.
This paper proposes a Deep Learning model that learns to reconstruct CT projections from a few or even a single-view X-ray.
arXiv Detail & Related papers (2022-02-02T13:25:23Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
A radiograph visualizes the internal anatomy of a patient through the use of X-ray, which projects 3D information onto a 2D plane.
To the best of our knowledge, this is the first work on radiograph view synthesis.
We show that by gaining an understanding of radiography in 3D space, our method can be applied to radiograph bone extraction and suppression without groundtruth bone labels.
arXiv Detail & Related papers (2020-12-04T05:08:53Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.