論文の概要: Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation
- arxiv url: http://arxiv.org/abs/2407.13567v1
- Date: Thu, 18 Jul 2024 14:40:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 15:00:55.945967
- Title: Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation
- Title(参考訳): Hyp2Nav: 群衆ナビゲーションのための双曲的計画と好奇心
- Authors: Alessandro Flaborea, Guido Maria D'Amely di Melendugno, Pascal Mettes, Fabio Galasso,
- Abstract要約: 我々は,群集ナビゲーションを実現するための双曲学習を提唱し,Hyp2Navを紹介した。
Hyp2Navは双曲幾何学の本質的な性質を活用し、ナビゲーションタスクにおける意思決定プロセスの階層的性質をよりよく符号化する。
本稿では, 効果的なソーシャルナビゲーション, 最高の成功率, 複数シミュレーション設定におけるリターンをもたらす, 双曲型ポリシーモデルと双曲型好奇性モジュールを提案する。
- 参考スコア(独自算出の注目度): 58.574464340559466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous robots are increasingly becoming a strong fixture in social environments. Effective crowd navigation requires not only safe yet fast planning, but should also enable interpretability and computational efficiency for working in real-time on embedded devices. In this work, we advocate for hyperbolic learning to enable crowd navigation and we introduce Hyp2Nav. Different from conventional reinforcement learning-based crowd navigation methods, Hyp2Nav leverages the intrinsic properties of hyperbolic geometry to better encode the hierarchical nature of decision-making processes in navigation tasks. We propose a hyperbolic policy model and a hyperbolic curiosity module that results in effective social navigation, best success rates, and returns across multiple simulation settings, using up to 6 times fewer parameters than competitor state-of-the-art models. With our approach, it becomes even possible to obtain policies that work in 2-dimensional embedding spaces, opening up new possibilities for low-resource crowd navigation and model interpretability. Insightfully, the internal hyperbolic representation of Hyp2Nav correlates with how much attention the robot pays to the surrounding crowds, e.g. due to multiple people occluding its pathway or to a few of them showing colliding plans, rather than to its own planned route.
- Abstract(参考訳): 自律型ロボットは、社会環境における強力な道具になりつつある。
効果的なクラウドナビゲーションには、安全かつ高速な計画だけでなく、組み込みデバイス上でリアルタイムに作業するための解釈可能性や計算効率も必要である。
本研究では,集団ナビゲーションを実現するための双曲学習を提唱し,Hyp2Navを紹介する。
従来の強化学習に基づく群集ナビゲーション法とは異なり、Hyp2Navは双曲幾何学の本質的な性質を活用し、ナビゲーションタスクにおける意思決定プロセスの階層的性質をよりよく符号化する。
提案するハイパーボリックポリシーモデルとハイパーボリック好奇性モジュールは,効果的なソーシャルナビゲーション,最高の成功率,複数のシミュレーション設定にまたがるリターンを実現し,競合する最先端モデルに比べて最大6倍のパラメータを用いて提案する。
提案手法により,2次元の埋め込み空間で機能するポリシーを得ることができ,低リソースのクラウドナビゲーションとモデル解釈可能性の新たな可能性を開くことができる。
Hyp2Navの内部のハイパーボリックな表現は、ロボットが周囲の群衆にどれだけの注意を払っているかに相関している。
関連論文リスト
- NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
本稿では,目標指向ナビゲーションと目標非依存探索の両方を扱うために,単一の統合拡散政策をトレーニングする方法について述べる。
この統一された政策は、新しい環境における目標を視覚的に示す際に、全体的な性能が向上することを示す。
実世界の移動ロボットプラットフォーム上で実施した実験は,5つの代替手法と比較して,見えない環境における効果的なナビゲーションを示す。
論文 参考訳(メタデータ) (2023-10-11T21:07:14Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - GNM: A General Navigation Model to Drive Any Robot [67.40225397212717]
視覚に基づくナビゲーションのための一般的な目標条件付きモデルは、多くの異なるが構造的に類似したロボットから得られたデータに基づいて訓練することができる。
ロボット間の効率的なデータ共有に必要な設計決定について分析する。
我々は、訓練されたGNMを、下四極子を含む様々な新しいロボットに展開する。
論文 参考訳(メタデータ) (2022-10-07T07:26:41Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
Gesture2Pathは、画像に基づく模倣学習とモデル予測制御を組み合わせた新しいソーシャルナビゲーション手法である。
実際のロボットに本手法をデプロイし,4つのジェスチャーナビゲーションシナリオに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-09-19T23:05:36Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
社会ナビゲーションは、ロボットのような自律的なエージェントが、人間のような他の知的エージェントの存在下で、社会的に従順な方法でナビゲートする能力である。
私たちのデータセットには8.7時間、128の軌道、25マイルの社会的に適合した人間の遠隔運転デモが含まれています。
論文 参考訳(メタデータ) (2022-03-28T19:09:11Z) - Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph [3.8461692052415137]
本研究では,高密度で対話的な群集における安全かつ意図に配慮したロボットナビゲーションの課題について検討する。
本稿では,エージェント間の異種相互作用を捕捉するアテンション機構を備えた新しいグラフニューラルネットワークを提案する。
提案手法は,群集ナビゲーションのシナリオにおいて,優れたナビゲーション性能と非侵襲性をロボットが実現できることを実証する。
論文 参考訳(メタデータ) (2022-03-03T16:26:36Z) - Learning Synthetic to Real Transfer for Localization and Navigational
Tasks [7.019683407682642]
ナビゲーションは、コンピュータビジョン、ロボット工学、制御の概念を組み合わせて、複数の分野のクロスロードにある。
この研究は、実世界への移動をできる限り少ない努力で行うことができるナビゲーションパイプラインをシミュレーションで作成することを目的としていた。
ナビゲーションパイプラインを設計するには、環境、ローカライゼーション、ナビゲーション、計画の4つの大きな課題が発生する。
論文 参考訳(メタデータ) (2020-11-20T08:37:03Z) - Decentralized Structural-RNN for Robot Crowd Navigation with Deep
Reinforcement Learning [4.724825031148412]
本研究では, 群集ナビゲーションにおけるロボット決定のための空間的・時間的関係を考慮に入れた構造的リカレントニューラルネットワーク(DS-RNN)を提案する。
我々のモデルは、群衆ナビゲーションのシナリオに挑戦する上で、過去の手法よりも優れていることを実証する。
シミュレータで学んだポリシーを現実世界のTurtleBot 2iに転送することに成功した。
論文 参考訳(メタデータ) (2020-11-09T23:15:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。