EarthMarker: Visual Prompt Learning for Region-level and Point-level Remote Sensing Imagery Comprehension
- URL: http://arxiv.org/abs/2407.13596v2
- Date: Sat, 20 Jul 2024 10:20:28 GMT
- Title: EarthMarker: Visual Prompt Learning for Region-level and Point-level Remote Sensing Imagery Comprehension
- Authors: Wei Zhang, Miaoxin Cai, Tong Zhang, Jun Li, Yin Zhuang, Xuerui Mao,
- Abstract summary: The first visual prompting model named EarthMarker is proposed, which excels in image-level, region-level, and point-level RS imagery interpretation.
To endow the EarthMarker with versatile multi-granularity visual perception abilities, the cross-domain phased learning strategy is developed.
To tackle the lack of RS visual prompting data, a dataset named RSVP featuring multi-modal fine-grained visual prompting instruction is constructed.
- Score: 12.9701635989222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in visual prompting in the natural image area have allowed users to interact with artificial intelligence (AI) tools through various visual marks such as box, point, and free-form shapes. However, due to the significant difference between the natural and remote sensing (RS) images, existing visual prompting models face challenges in RS scenarios. Moreover, RS MLLMs mainly focus on interpreting image-level RS data and only support interaction with language instruction, restricting flexibility applications in the real world. To address those limitations, the first visual prompting model named EarthMarker is proposed, which excels in image-level, region-level, and point-level RS imagery interpretation. Specifically, the visual prompts alongside images and text instruction input into the large language model (LLM), adapt models toward specific predictions and tasks. Subsequently, a sharing visual encoding method is introduced to refine multi-scale image features and visual prompt information uniformly. Furthermore, to endow the EarthMarker with versatile multi-granularity visual perception abilities, the cross-domain phased learning strategy is developed, and the disjoint parameters are optimized in a lightweight manner by leveraging both the natural and RS domain-specific knowledge. In addition, to tackle the lack of RS visual prompting data, a dataset named RSVP featuring multi-modal fine-grained visual prompting instruction is constructed. Extensive experiments are conducted to demonstrate the proposed EarthMarker's competitive performance, representing a significant advance in multi-granularity RS imagery interpretation under the visual prompting learning framework.
Related papers
- RSRefSeg: Referring Remote Sensing Image Segmentation with Foundation Models [24.67117013862316]
Referring remote sensing image segmentation is crucial for achieving fine-grained visual understanding.
We introduce a referring remote sensing image segmentation foundational model, RSRefSeg.
Experimental results on the RRSIS-D dataset demonstrate that RSRefSeg outperforms existing methods.
arXiv Detail & Related papers (2025-01-12T13:22:35Z) - RSTeller: Scaling Up Visual Language Modeling in Remote Sensing with Rich Linguistic Semantics from Openly Available Data and Large Language Models [5.981597754991408]
We propose a workflow to generate multimodal datasets with semantically rich captions at scale from plain OpenStreetMap (OSM) data for images sourced from the Google Earth Engine (GEE) platform.
Within this framework, we present RSTeller, a multimodal dataset comprising over 1.3 million RS images, each accompanied by two descriptive captions.
arXiv Detail & Related papers (2024-08-27T02:45:26Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
We leverage the capabilities of Vision-and-Large-Language Models to enhance in-context emotion classification.
In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion.
In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture.
arXiv Detail & Related papers (2024-04-10T15:09:15Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
We present a novel language-tied self-supervised learning framework, Hierarchical Language-tied Self-Supervision (HLSS) for histopathology images.
Our resulting model achieves state-of-the-art performance on two medical imaging benchmarks, OpenSRH and TCGA datasets.
arXiv Detail & Related papers (2024-03-21T17:58:56Z) - Large Language Models for Captioning and Retrieving Remote Sensing
Images [4.499596985198142]
RS-CapRet is a Vision and Language method for remote sensing tasks.
It can generate descriptions for remote sensing images and retrieve images from textual descriptions.
arXiv Detail & Related papers (2024-02-09T15:31:01Z) - LHRS-Bot: Empowering Remote Sensing with VGI-Enhanced Large Multimodal Language Model [10.280417075859141]
We introduce LHRS-Bot, an MLLM tailored for RS image understanding through a novel vision-language alignment strategy and a curriculum learning method.
Comprehensive experiments demonstrate that LHRS-Bot exhibits a profound understanding of RS images and the ability to perform nuanced reasoning within the RS domain.
arXiv Detail & Related papers (2024-02-04T15:46:43Z) - GeoChat: Grounded Large Vision-Language Model for Remote Sensing [65.78360056991247]
We propose GeoChat - the first versatile remote sensing Large Vision-Language Models (VLMs) that offers multitask conversational capabilities with high-resolution RS images.
Specifically, GeoChat can answer image-level queries but also accepts region inputs to hold region-specific dialogue.
GeoChat demonstrates robust zero-shot performance on various RS tasks, e.g., image and region captioning, visual question answering, scene classification, visually grounded conversations and referring detection.
arXiv Detail & Related papers (2023-11-24T18:59:10Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.