EarthMarker: Visual Prompt Learning for Region-level and Point-level Remote Sensing Imagery Comprehension
- URL: http://arxiv.org/abs/2407.13596v2
- Date: Sat, 20 Jul 2024 10:20:28 GMT
- Title: EarthMarker: Visual Prompt Learning for Region-level and Point-level Remote Sensing Imagery Comprehension
- Authors: Wei Zhang, Miaoxin Cai, Tong Zhang, Jun Li, Yin Zhuang, Xuerui Mao,
- Abstract summary: The first visual prompting model named EarthMarker is proposed, which excels in image-level, region-level, and point-level RS imagery interpretation.
To endow the EarthMarker with versatile multi-granularity visual perception abilities, the cross-domain phased learning strategy is developed.
To tackle the lack of RS visual prompting data, a dataset named RSVP featuring multi-modal fine-grained visual prompting instruction is constructed.
- Score: 12.9701635989222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in visual prompting in the natural image area have allowed users to interact with artificial intelligence (AI) tools through various visual marks such as box, point, and free-form shapes. However, due to the significant difference between the natural and remote sensing (RS) images, existing visual prompting models face challenges in RS scenarios. Moreover, RS MLLMs mainly focus on interpreting image-level RS data and only support interaction with language instruction, restricting flexibility applications in the real world. To address those limitations, the first visual prompting model named EarthMarker is proposed, which excels in image-level, region-level, and point-level RS imagery interpretation. Specifically, the visual prompts alongside images and text instruction input into the large language model (LLM), adapt models toward specific predictions and tasks. Subsequently, a sharing visual encoding method is introduced to refine multi-scale image features and visual prompt information uniformly. Furthermore, to endow the EarthMarker with versatile multi-granularity visual perception abilities, the cross-domain phased learning strategy is developed, and the disjoint parameters are optimized in a lightweight manner by leveraging both the natural and RS domain-specific knowledge. In addition, to tackle the lack of RS visual prompting data, a dataset named RSVP featuring multi-modal fine-grained visual prompting instruction is constructed. Extensive experiments are conducted to demonstrate the proposed EarthMarker's competitive performance, representing a significant advance in multi-granularity RS imagery interpretation under the visual prompting learning framework.
Related papers
- GeoGround: A Unified Large Vision-Language Model. for Remote Sensing Visual Grounding [31.01378033872341]
GeoGround is a novel framework that unifies support for HBB, OBB, and mask RS visual grounding tasks.
To support model training, we present refGeo, a large-scale RS visual instruction-following dataset containing 161k image-text pairs.
arXiv Detail & Related papers (2024-11-16T05:12:11Z) - LHRS-Bot-Nova: Improved Multimodal Large Language Model for Remote Sensing Vision-Language Interpretation [21.91073335335992]
We introduce LHRS-Bot-Nova, an MLLM specialized in understanding remote sensing (RS) images.
LHRS-Bot-Nova features an enhanced vision encoder and a novel bridge layer, enabling efficient visual compression and better language-vision alignment.
Extensive experiments demonstrate superior performance of LHRS-Bot-Nova across various RS image understanding tasks.
arXiv Detail & Related papers (2024-11-14T09:23:40Z) - EAGLE: Towards Efficient Arbitrary Referring Visual Prompts Comprehension for Multimodal Large Language Models [80.00303150568696]
We propose a novel Multimodal Large Language Models (MLLM) that empowers comprehension of arbitrary referring visual prompts with less training efforts than existing approaches.
Our approach embeds referring visual prompts as spatial concepts conveying specific spatial areas comprehensible to the MLLM.
We also propose a Geometry-Agnostic Learning paradigm (GAL) to further disentangle the MLLM's region-level comprehension with the specific formats of referring visual prompts.
arXiv Detail & Related papers (2024-09-25T08:22:00Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - ProGEO: Generating Prompts through Image-Text Contrastive Learning for Visual Geo-localization [0.0]
We propose a two-stage training method to enhance visual performance and use contrastive learning to mine challenging samples.
We validate the effectiveness of the proposed strategy on several large-scale visual geo-localization datasets.
arXiv Detail & Related papers (2024-06-04T02:28:51Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - LHRS-Bot: Empowering Remote Sensing with VGI-Enhanced Large Multimodal Language Model [10.280417075859141]
We introduce LHRS-Bot, an MLLM tailored for RS image understanding through a novel vision-language alignment strategy and a curriculum learning method.
Comprehensive experiments demonstrate that LHRS-Bot exhibits a profound understanding of RS images and the ability to perform nuanced reasoning within the RS domain.
arXiv Detail & Related papers (2024-02-04T15:46:43Z) - GeoChat: Grounded Large Vision-Language Model for Remote Sensing [65.78360056991247]
We propose GeoChat - the first versatile remote sensing Large Vision-Language Models (VLMs) that offers multitask conversational capabilities with high-resolution RS images.
Specifically, GeoChat can answer image-level queries but also accepts region inputs to hold region-specific dialogue.
GeoChat demonstrates robust zero-shot performance on various RS tasks, e.g., image and region captioning, visual question answering, scene classification, visually grounded conversations and referring detection.
arXiv Detail & Related papers (2023-11-24T18:59:10Z) - GeoVLN: Learning Geometry-Enhanced Visual Representation with Slot
Attention for Vision-and-Language Navigation [52.65506307440127]
We propose GeoVLN, which learns Geometry-enhanced visual representation based on slot attention for robust Visual-and-Language Navigation.
We employ V&L BERT to learn a cross-modal representation that incorporate both language and vision informations.
arXiv Detail & Related papers (2023-05-26T17:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.