論文の概要: Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls
- arxiv url: http://arxiv.org/abs/2407.13625v2
- Date: Fri, 18 Oct 2024 11:43:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 20:14:30.235059
- Title: Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls
- Title(参考訳): 交差するワッサースタインボールによる分布的および逆ロバストなロジスティック回帰
- Authors: Aras Selvi, Eleonora Kreacic, Mohsen Ghassemi, Vamsi Potluru, Tucker Balch, Manuela Veloso,
- Abstract要約: 逆堅牢最適化(Adversarially robust optimization, ARO)は、テスト中に敵の攻撃に対して防御する訓練モデルのデファクトスタンダードとなっている。
その頑丈さにもかかわらず、これらのモデルはしばしば過度なオーバーフィットに悩まされる。
学習における経験的分布を, (i) あいまいさ集合内の最悪のケース分布, (ii) 補助的データセットから派生した経験的分布の混合に置き換える2つの方法を提案する。
- 参考スコア(独自算出の注目度): 8.720733751119994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarially robust optimization (ARO) has become the de facto standard for training models to defend against adversarial attacks during testing. However, despite their robustness, these models often suffer from severe overfitting. To mitigate this issue, several successful approaches have been proposed, including replacing the empirical distribution in training with: (i) a worst-case distribution within an ambiguity set, leading to a distributionally robust (DR) counterpart of ARO; or (ii) a mixture of the empirical distribution with one derived from an auxiliary dataset (e.g., synthetic, external, or out-of-domain). Building on the first approach, we explore the Wasserstein DR counterpart of ARO for logistic regression and show it admits a tractable convex optimization reformulation. Adopting the second approach, we enhance the DR framework by intersecting its ambiguity set with one constructed from an auxiliary dataset, which yields significant improvements when the Wasserstein distance between the data-generating and auxiliary distributions can be estimated. We analyze the resulting optimization problem, develop efficient solutions, and show that our method outperforms benchmark approaches on standard datasets.
- Abstract(参考訳): 逆堅牢最適化(Adversarially robust optimization, ARO)は、テスト中に敵の攻撃に対して防御する訓練モデルのデファクトスタンダードとなっている。
しかし、その頑丈さにもかかわらず、これらのモデルはしばしば過度なオーバーフィットに悩まされる。
この問題を緩和するために、トレーニングにおける経験的分布を次のように置き換えるなど、いくつかの成功したアプローチが提案されている。
一 曖昧性集合内の最悪の場合の分布で、AROの分布的堅牢性(DR)に繋がるもの
二 補助的データセット(例えば、合成、外部、ドメイン外)から派生した経験分布の混合物。
最初のアプローチに基づいて、ロジスティック回帰のための ARO のワッサーシュタイン DR を探索し、トラクタブル凸最適化の修正を認めることを示す。
第2のアプローチを採用することで,データ生成と補助分布間のワッサーシュタイン距離を推定し,そのあいまいさを補助的データセットから構築したものと交差させることにより,DRフレームワークを強化する。
提案手法は,結果の最適化問題を解析し,効率的な解を開発し,標準データセットのベンチマーク手法よりも優れていることを示す。
関連論文リスト
- Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
本研究の目的は分散ロバストな最適化 (DRO) 推定器の開発であり、特に多次元極値理論 (EVT) の統計量についてである。
点過程の空間における半パラメトリックな最大安定制約によって予測されるDRO推定器について検討した。
両手法は, 合成データを用いて検証し, 所定の特性を回復し, 提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-07-31T19:45:27Z) - DRAUC: An Instance-wise Distributionally Robust AUC Optimization
Framework [133.26230331320963]
ROC曲線のエリア(AUC)は、長い尾の分類のシナリオにおいて広く用いられている指標である。
本研究では,分散ロバストAUC(DRAUC)のインスタンスワイドサロゲート損失を提案し,その上に最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-11-06T12:15:57Z) - Federated Distributionally Robust Optimization with Non-Convex
Objectives: Algorithm and Analysis [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2023-07-25T01:56:57Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2022-10-14T07:39:13Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - When AUC meets DRO: Optimizing Partial AUC for Deep Learning with
Non-Convex Convergence Guarantee [51.527543027813344]
単方向および二方向部分AUC(pAUC)の系統的および効率的な勾配法を提案する。
一方通行と一方通行の pAUC に対して,2つのアルゴリズムを提案し,それぞれ2つの定式化を最適化するための収束性を証明した。
論文 参考訳(メタデータ) (2022-03-01T01:59:53Z) - Distributionally Robust Learning [11.916893752969429]
本書は,データの摂動に頑健な包括的統計学習フレームワークを開発する。
各問題に対する引き込み可能なDRO緩和が導出され、境界と正規化の間の接続が確立される。
理論以外にも、数値実験や、合成データと実データを用いたケーススタディも含んでいる。
論文 参考訳(メタデータ) (2021-08-20T04:14:18Z) - Residuals-based distributionally robust optimization with covariate
information [0.0]
我々は、分散ロバスト最適化(DRO)における機械学習予測モデルを統合するデータ駆動アプローチを検討する。
私たちのフレームワークは、さまざまな学習設定やDROあいまいさセットに対応できるという意味で柔軟です。
論文 参考訳(メタデータ) (2020-12-02T11:21:34Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
我々は,DALI(Decomposed Adversarial Learned Inference)という新しいアプローチを提案する。
DALIは、データ空間とコード空間の両方の事前および条件分布を明示的に一致させる。
MNIST, CIFAR-10, CelebAデータセットにおけるDALIの有効性を検証する。
論文 参考訳(メタデータ) (2020-04-21T20:00:35Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
経験値関数の新しい正規化器を導入し、ワッサーシュタイン分布のロバストな値関数を下限とすることを示す。
強化学習における$textitexternalな不確実性に対処するための実用的なツールとして正規化を使用することを提案する。
論文 参考訳(メタデータ) (2020-03-05T19:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。