論文の概要: Squintability and Other Metrics for Assessing Projection Pursuit Indexes, and Guiding Optimization Choices
- arxiv url: http://arxiv.org/abs/2407.13663v3
- Date: Sun, 09 Mar 2025 00:07:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:42:34.327918
- Title: Squintability and Other Metrics for Assessing Projection Pursuit Indexes, and Guiding Optimization Choices
- Title(参考訳): 投射探索指標の評価と最適化選択の導出のためのスクインタビリティとその他の指標
- Authors: H. Sherry Zhang, Dianne Cook, Nicolas Langrené, Jessica Wai Yin Leung,
- Abstract要約: PP指数の滑らかさと特異性を計算するための尺度を定義した。
PPインデックスの最適化のために,Swarm-based algorithm, Jellyfish Search (JSO) について検討した。
我々は, PP指数最適化の成功率が向上する一方で, 滑らかさが有意な影響を示さないことを観察した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The projection pursuit (PP) guided tour optimizes a criterion function, known as the PP index, to gradually reveal projections of interest from high-dimensional data through animation. Optimization of some PP indexes can be non-trivial, if they are non-smooth functions, or when the optimum has a small "squint angle", detectable only from close proximity. Here, measures for calculating the smoothness and squintability properties of the PP index are defined. These are used to investigate the performance of a recently introduced swarm-based algorithm, Jellyfish Search Optimizer (JSO), for optimizing PP indexes. The performance of JSO in detecting the target pattern (pipe shape) is compared with existing optimizers in PP. Additionally, JSO's performance on detecting the sine-wave shape is evaluated using different PP indexes (hence different smoothness and squintability) across various data dimensions (d = 4, 6, 8, 10, 12) and JSO hyper-parameters. We observe empirically that higher squintability improves the success rate of the PP index optimization, while smoothness has no significant effect. The JSO algorithm has been implemented in the R package, `tourr`, and functions to calculate smoothness and squintability measures are implemented in the `ferrn` package.
- Abstract(参考訳): プロジェクション追跡(PP)ガイド付きツアーは、PPインデックスとして知られる基準関数を最適化し、アニメーションを通して高次元データからの関心の投影を徐々に明らかにする。
PP指数の最適化は、非滑らかな関数である場合や、最適値が小さな「スキント角」を持つ場合、近接してのみ検出できる場合、非自明である。
ここでは、PP指数の滑らかさと特異性を計算するための尺度が定義される。
これらは最近導入されたSwarmベースのアルゴリズムであるJellyfish Search Optimizer (JSO)のパフォーマンスを調べ、PPインデックスを最適化するために使用される。
対象パターン(パイプ形状)の検出におけるJSOの性能は、PPの既存のオプティマイザと比較する。
さらに, 各種データ次元 (d = 4, 6, 8, 10, 12) とJSOハイパーパラメータ (JSOハイパーパラメータ) の異なるPP指数(従って滑らかさと特異性が異なる)を用いて, 正弦波形状検出におけるJSOの性能を評価した。
我々は, PP指数最適化の成功率が向上する一方, 滑らかさは有意な影響を及ぼさないことを実証的に観察した。
JSOアルゴリズムはRパッケージである `tourr" に実装されており、"ferrn" パッケージでは滑らかさとスキンタビリティの指標を計算する関数が実装されている。
関連論文リスト
- PSO and the Traveling Salesman Problem: An Intelligent Optimization Approach [0.0]
トラベリングセールスマン問題(TSP)は、各都市を正確に1度訪れて出発点に戻る最短ルートを見つけることを目的とした最適化問題である。
本稿では,人口ベース最適化アルゴリズムであるParticle Swarm Optimization (PSO) のTSP解決への応用について検討する。
論文 参考訳(メタデータ) (2025-01-25T20:21:31Z) - Optimizing Posterior Samples for Bayesian Optimization via Rootfinding [2.94944680995069]
我々は,グローバルなルートフィンディングに基づく後方サンプルの効率的な大域的最適化手法を提案する。
注目すべきは、各集合から 1 点しか持たなくても、大域的最適度は大抵の場合発見されることである。
提案手法は,エントロピー探索の変種など,他の後部サンプルベース獲得関数の性能も向上する。
論文 参考訳(メタデータ) (2024-10-29T17:57:16Z) - Testing the Efficacy of Hyperparameter Optimization Algorithms in Short-Term Load Forecasting [0.0]
我々は、Panaama Electricityデータセットを用いて、サロゲート予測アルゴリズムであるXGBoostのHPOアルゴリズムの性能を、精度(MAPE、$R2$)とランタイムで評価する。
その結果,Random SearchよりもHPOアルゴリズムが優れていることがわかった。
論文 参考訳(メタデータ) (2024-10-19T09:08:52Z) - Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
我々は,POMDPパラメータを信念に基づくポリシを用いて収集したサンプルから学習することのできる観測・認識スペクトル(OAS)推定手法を提案する。
提案するOAS-UCRLアルゴリズムに対して,OASプロシージャの整合性を示し,$mathcalO(sqrtT log(T)$の残差保証を証明した。
論文 参考訳(メタデータ) (2024-10-02T08:46:34Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - Bayesian multi-objective optimization for stochastic simulators: an
extension of the Pareto Active Learning method [0.0]
本稿では,高い出力分散を有するシミュレータの多目的最適化に着目する。
我々はベイズ最適化アルゴリズムを用いて最適化すべき関数の予測を行う。
論文 参考訳(メタデータ) (2022-07-08T11:51:48Z) - Shapley-NAS: Discovering Operation Contribution for Neural Architecture
Search [96.20505710087392]
ニューラルアーキテクチャ探索のための演算寄与度(Shapley-NAS)を評価するためのShapley値に基づく手法を提案する。
提案手法は,光探索コストに比例して最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-20T14:41:49Z) - Probabilistic Permutation Graph Search: Black-Box Optimization for
Fairness in Ranking [53.94413894017409]
本稿では、置換グラフの概念に基づいて、置換分布を表現する新しい方法を提案する。
PLと同様に、PPGと呼ばれる分布表現は、公正性のブラックボックス最適化に利用できる。
論文 参考訳(メタデータ) (2022-04-28T20:38:34Z) - Bayesian Optimization over Permutation Spaces [30.650753803587794]
BOPS (Permutation Spaces) に対する2つのアルゴリズムの提案と評価を行った。
BOPS-Tの性能を理論的に解析し,その後悔がサブリニアに増加することを示す。
複数の合成および実世界のベンチマーク実験により、BOPS-TとBOPS-Hは、空間に対する最先端のBOアルゴリズムよりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-12-02T08:20:50Z) - Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval [94.73459295405507]
Smooth-APは、ディープネットワークのエンドツーエンドトレーニングを可能にする、プラグアンドプレイの客観的機能である。
我々はSmooth-APをStanford Online製品とVabyIDの標準ベンチマークに適用する。
Inaturalist for fine-fine category search, VGGFace2 and IJB-C for face search。
論文 参考訳(メタデータ) (2020-07-23T17:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。