論文の概要: A Comprehensive Review of Recommender Systems: Transitioning from Theory to Practice
- arxiv url: http://arxiv.org/abs/2407.13699v1
- Date: Thu, 18 Jul 2024 17:00:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 14:31:41.190280
- Title: A Comprehensive Review of Recommender Systems: Transitioning from Theory to Practice
- Title(参考訳): 総合的なレコメンダシステムのレビュー:理論から実践へ
- Authors: Shaina Raza, Mizanur Rahman, Safiullah Kamawal, Armin Toroghi, Ananya Raval, Farshad Navah, Amirmohammad Kazemeini,
- Abstract要約: Recommender Systems(RS)は、パーソナライズされたアイテムの提案を提供することで、ユーザーエクスペリエンスを高める上で重要な役割を果たす。
この調査は、2017年から2024年までのRSの進歩を包括的にレビューする。
それは、eコマース、ヘルスケア、金融など、さまざまな分野の課題に対処する。
- 参考スコア(独自算出の注目度): 5.564583287027287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommender Systems (RS) play an integral role in enhancing user experiences by providing personalized item suggestions. This survey reviews the progress in RS inclusively from 2017 to 2024, effectively connecting theoretical advances with practical applications. We explore the development from traditional RS techniques like content-based and collaborative filtering to advanced methods involving deep learning, graph-based models, reinforcement learning, and large language models. We also discuss specialized systems such as context-aware, review-based, and fairness-aware RS. The primary goal of this survey is to bridge theory with practice. It addresses challenges across various sectors, including e-commerce, healthcare, and finance, emphasizing the need for scalable, real-time, and trustworthy solutions. Through this survey, we promote stronger partnerships between academic research and industry practices. The insights offered by this survey aim to guide industry professionals in optimizing RS deployment and to inspire future research directions, especially in addressing emerging technological and societal trends
- Abstract(参考訳): Recommender Systems(RS)は、パーソナライズされたアイテムの提案を提供することで、ユーザーエクスペリエンスを高める上で重要な役割を果たす。
この調査は、2017年から2024年までのRSの進歩を包括的にレビューし、理論的進歩と実践的応用を効果的に結びつけるものである。
我々は、コンテンツベースや協調フィルタリングといった従来のRS技術から、ディープラーニング、グラフベースモデル、強化学習、大規模言語モデルを含む高度な手法まで、開発について検討する。
また、コンテキスト認識、レビューベース、フェアネス認識RSなどの専門システムについても論じる。
この調査の第一の目的は、理論を実践と橋渡しすることである。
それは、eコマース、ヘルスケア、金融など、さまざまな分野の課題に対処し、スケーラブルでリアルタイムで信頼できるソリューションの必要性を強調している。
本調査を通じて,学術研究と産業実践の連携を深める。
本調査から得られた知見は,産業専門家のRS展開の最適化と今後の研究の方向性,特に新興技術・社会のトレンドへの対応を導くことを目的としている。
関連論文リスト
- Teaching Design Science as a Method for Effective Research Development [0.24578723416255752]
デザインサイエンスリサーチ(DSR)方法論の適用は、情報システム(IS)とソフトウェア工学研究の一般的な作業資源になりつつある。
この章には、DSR、教育方法論、学習目的、レコメンデーションの例が含まれている。
我々は,デザインサイエンスのユーザ体験に関するデータ収集を目的とした調査成果を作成した。
論文 参考訳(メタデータ) (2024-07-13T10:43:06Z) - Emerging Synergies Between Large Language Models and Machine Learning in
Ecommerce Recommendations [19.405233437533713]
大規模言語モデル(LLM)は、言語理解と生成の基本的なタスクにおいて優れた機能を持つ。
機能エンコーダとしてLLMを用いたユーザとアイテムの表現を学習するための代表的なアプローチを提案する。
次に、協調フィルタリング強化レコメンデーションシステムのためのLLM技術の最新技術について概説した。
論文 参考訳(メタデータ) (2024-03-05T08:31:00Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
重要な側面は、ユーザやアイテムIDといった高次元の離散的な特徴を低次元連続ベクトルに包含する技法である。
埋め込み技術の適用は複雑なエンティティ関係を捉え、かなりの研究を刺激している。
この調査では、協調フィルタリング、自己教師付き学習、グラフベースのテクニックなどの埋め込み手法を取り上げている。
論文 参考訳(メタデータ) (2023-10-28T06:31:06Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
大きな言語モデル(LLM)は、印象的な汎用知性と人間のような能力を示している。
我々は,実世界のレコメンデータシステムにおけるパイプライン全体の観点から,この研究の方向性を包括的に調査する。
論文 参考訳(メタデータ) (2023-06-09T11:31:50Z) - Towards machine learning guided by best practices [0.0]
機械学習(ML)は、医学からソフトウェア工学(SE)まで、複数の応用分野を持つソフトウェアシステムで使われている。
この論文は、SEコミュニティの実践者や研究者が使用し議論するプラクティスを理解するのに役立つ研究の質問に答えることを目的としている。
論文 参考訳(メタデータ) (2023-04-29T10:58:37Z) - Situating Recommender Systems in Practice: Towards Inductive Learning
and Incremental Updates [9.47821118140383]
概念を形式化し、過去6年間に推奨されたシステムをコンテキスト化します。
次に、モデル設計と評価のためのインクリメンタルな学習とインクリメンタルなアップデートに向けて、今後の作業がなぜ、どのように進むべきかについて議論する。
論文 参考訳(メタデータ) (2022-11-11T17:29:35Z) - Reinforcement Learning Applied to Trading Systems: A Survey [5.118560450410779]
近年の成果と強化学習の有名さは、取引業務における採用率を高めている。
このレビューは、研究者の標準遵守へのコミットメントによって、この研究分野の発展を促進する試みである。
論文 参考訳(メタデータ) (2022-11-01T21:26:12Z) - KnowledgeCheckR: Intelligent Techniques for Counteracting Forgetting [52.623349754076024]
KnowledgeCheckRに統合された推奨アプローチの概要を提供します。
その例としては,将来的に繰り返される学習内容の識別を支援するユーティリティベースのレコメンデーション,セッションベースのレコメンデーションを実装するための協調フィルタリングアプローチ,インテリジェントな質問応答を支援するコンテントベースのレコメンデーションなどがある。
論文 参考訳(メタデータ) (2021-02-15T20:06:28Z) - Advances and Challenges in Conversational Recommender Systems: A Survey [133.93908165922804]
現在の会話レコメンダーシステム(CRS)で使用されるテクニックの体系的なレビューを提供します。
CRS開発の主な課題を5つの方向にまとめます。
これらの研究の方向性は、情報検索(IR)、自然言語処理(NLP)、人間とコンピュータの相互作用(HCI)などの複数の研究分野を含みます。
論文 参考訳(メタデータ) (2021-01-23T08:53:15Z) - Deep Conversational Recommender Systems: A New Frontier for
Goal-Oriented Dialogue Systems [54.06971074217952]
Conversational Recommender System (CRS)は対話型対話を通じてユーザの好みを学習し、モデル化する。
ディープラーニングアプローチはCRSに適用され、実りある結果を生み出した。
論文 参考訳(メタデータ) (2020-04-28T02:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。