Random Latent Exploration for Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2407.13755v3
- Date: Thu, 27 Feb 2025 16:47:34 GMT
- Title: Random Latent Exploration for Deep Reinforcement Learning
- Authors: Srinath Mahankali, Zhang-Wei Hong, Ayush Sekhari, Alexander Rakhlin, Pulkit Agrawal,
- Abstract summary: We introduce Random Latent Exploration (RLE), a simple yet effective exploration strategy in reinforcement learning (RL)<n>On average, RLE outperforms noise-based methods, which perturb the agent's actions, and bonus-based exploration, which rewards the agent for attempting novel behaviors.<n>RLE is as simple as noise-based methods, as it avoids complex bonus calculations but retains the deep exploration benefits of bonus-based methods.
- Score: 71.88709402926415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Random Latent Exploration (RLE), a simple yet effective exploration strategy in reinforcement learning (RL). On average, RLE outperforms noise-based methods, which perturb the agent's actions, and bonus-based exploration, which rewards the agent for attempting novel behaviors. The core idea of RLE is to encourage the agent to explore different parts of the environment by pursuing randomly sampled goals in a latent space. RLE is as simple as noise-based methods, as it avoids complex bonus calculations but retains the deep exploration benefits of bonus-based methods. Our experiments show that RLE improves performance on average in both discrete (e.g., Atari) and continuous control tasks (e.g., Isaac Gym), enhancing exploration while remaining a simple and general plug-in for existing RL algorithms. Project website and code: https://srinathm1359.github.io/random-latent-exploration
Related papers
- MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization [91.80034860399677]
Reinforcement learning algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards.
We introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration.
We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits.
arXiv Detail & Related papers (2024-12-16T18:59:53Z) - Curiosity & Entropy Driven Unsupervised RL in Multiple Environments [0.0]
We propose and experiment with five new modifications to the original work.
In high-dimensional environments, curiosity-driven exploration enhances learning by encouraging the agent to seek diverse experiences and explore the unknown more.
However, its benefits are limited in low-dimensional and simpler environments where exploration possibilities are constrained and there is little that is truly unknown to the agent.
arXiv Detail & Related papers (2024-01-08T19:25:40Z) - Curricular Subgoals for Inverse Reinforcement Learning [21.038691420095525]
Inverse Reinforcement Learning (IRL) aims to reconstruct the reward function from expert demonstrations to facilitate policy learning.
Existing IRL methods mainly focus on learning global reward functions to minimize the trajectory difference between the imitator and the expert.
We propose a novel Curricular Subgoal-based Inverse Reinforcement Learning framework, that explicitly disentangles one task with several local subgoals to guide agent imitation.
arXiv Detail & Related papers (2023-06-14T04:06:41Z) - On the Importance of Exploration for Generalization in Reinforcement
Learning [89.63074327328765]
We propose EDE: Exploration via Distributional Ensemble, a method that encourages exploration of states with high uncertainty.
Our algorithm is the first value-based approach to achieve state-of-the-art on both Procgen and Crafter.
arXiv Detail & Related papers (2023-06-08T18:07:02Z) - DEIR: Efficient and Robust Exploration through
Discriminative-Model-Based Episodic Intrinsic Rewards [2.09711130126031]
Exploration is a fundamental aspect of reinforcement learning (RL), and its effectiveness is a deciding factor in the performance of RL algorithms.
Recent studies have shown the effectiveness of encouraging exploration with intrinsic rewards estimated from novelties in observations.
We propose DEIR, a novel method in which we theoretically derive an intrinsic reward with a conditional mutual information term.
arXiv Detail & Related papers (2023-04-21T06:39:38Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL [91.26538493552817]
We present a formulation of hindsight relabeling for meta-RL, which relabels experience during meta-training to enable learning to learn entirely using sparse reward.
We demonstrate the effectiveness of our approach on a suite of challenging sparse reward goal-reaching environments.
arXiv Detail & Related papers (2021-12-02T00:51:17Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
We study the reward-free RL problem, where an agent aims to thoroughly explore the environment without any pre-specified reward function.
We tackle this problem under the context of function approximation, leveraging powerful function approximators.
We establish the first provably efficient reward-free RL algorithm with kernel and neural function approximators.
arXiv Detail & Related papers (2021-10-19T07:26:33Z) - Focus on Impact: Indoor Exploration with Intrinsic Motivation [45.97756658635314]
In this work, we propose to train a model with a purely intrinsic reward signal to guide exploration.
We include a neural-based density model and replace the traditional count-based regularization with an estimated pseudo-count of previously visited states.
We also show that a robot equipped with the proposed approach seamlessly adapts to point-goal navigation and real-world deployment.
arXiv Detail & Related papers (2021-09-14T18:00:07Z) - MADE: Exploration via Maximizing Deviation from Explored Regions [48.49228309729319]
In online reinforcement learning (RL), efficient exploration remains challenging in high-dimensional environments with sparse rewards.
We propose a new exploration approach via textitmaximizing the deviation of the occupancy of the next policy from the explored regions.
Our approach significantly improves sample efficiency over state-of-the-art methods.
arXiv Detail & Related papers (2021-06-18T17:57:00Z) - BeBold: Exploration Beyond the Boundary of Explored Regions [66.88415950549556]
In this paper, we propose the regulated difference of inverse visitation counts as a simple but effective criterion for intrinsic reward (IR)
The criterion helps the agent explore Beyond the Boundary of explored regions and mitigates common issues in count-based methods, such as short-sightedness and detachment.
The resulting method, BeBold, solves the 12 most challenging procedurally-generated tasks in MiniGrid with just 120M environment steps, without any curriculum learning.
arXiv Detail & Related papers (2020-12-15T21:26:54Z) - Never Give Up: Learning Directed Exploration Strategies [63.19616370038824]
We propose a reinforcement learning agent to solve hard exploration games by learning a range of directed exploratory policies.
We construct an episodic memory-based intrinsic reward using k-nearest neighbors over the agent's recent experience to train the directed exploratory policies.
A self-supervised inverse dynamics model is used to train the embeddings of the nearest neighbour lookup, biasing the novelty signal towards what the agent can control.
arXiv Detail & Related papers (2020-02-14T13:57:22Z) - Reinforcement Learning with Probabilistically Complete Exploration [27.785017885906313]
We propose Rapidly Randomly-exploring Reinforcement Learning (R3L)
We formulate exploration as a search problem and leverage widely-used planning algorithms to find initial solutions.
We experimentally demonstrate the method, requiring only a fraction of exploration samples and achieving better performance.
arXiv Detail & Related papers (2020-01-20T02:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.