DERMARK: A Dynamic, Efficient and Robust Multi-bit Watermark for Large Language Models
- URL: http://arxiv.org/abs/2502.05213v1
- Date: Tue, 04 Feb 2025 11:23:49 GMT
- Title: DERMARK: A Dynamic, Efficient and Robust Multi-bit Watermark for Large Language Models
- Authors: Qihao Lin, Chen Tang, Lan zhang, Junyang zhang, Xiangyang Li,
- Abstract summary: We propose DERMARK, a dynamic, efficient, and robust multi-bit watermarking method.
DERMARK divides the text into segments of varying lengths for each bit embedding, adaptively matching the text's capacity.
It achieves this with negligible overhead and robust performance against text editing by minimizing watermark extraction loss.
- Score: 18.023143082876015
- License:
- Abstract: Well-trained large language models (LLMs) present significant risks, including potential malicious use and copyright infringement. Current studies aim to trace the distribution of LLM-generated texts by implicitly embedding watermarks. Among these, the single-bit watermarking method can only determine whether a given text was generated by an LLM. In contrast, the multi-bit watermarking method embeds richer information into the generated text, which can identify which LLM generated and distributed a given text to which user. However, existing efforts embed the multi-bit watermark directly into the generated text without accounting for its watermarking capacity. This approach can result in embedding failures when the text's watermarking capacity is insufficient. In this paper, we derive the watermark embedding distribution based on the logits of LLMs and propose a formal inequality to segment the text optimally for watermark embedding. Building on this foundation, we propose DERMARK, a dynamic, efficient, and robust multi-bit watermarking method. DERMARK divides the text into segments of varying lengths for each bit embedding, adaptively matching the text's capacity. It achieves this with negligible overhead and robust performance against text editing by minimizing watermark extraction loss. Comprehensive experiments demonstrate that, compared to the SOTA method, our method reduces the number of tokens required for embedding each bit by 20\%, reduces watermark embedding time by 50\%, and is robust to text editing and watermark erasure attacks.
Related papers
- De-mark: Watermark Removal in Large Language Models [59.00698153097887]
We present De-mark, an advanced framework designed to remove n-gram-based watermarks effectively.
Our method utilizes a novel querying strategy, termed random selection probing, which aids in assessing the strength of the watermark.
arXiv Detail & Related papers (2024-10-17T17:42:10Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
We present a novel type of watermark, Sparse Watermark, which aims to mitigate this trade-off by applying watermarks to a small subset of generated tokens distributed across the text.
Our experimental results demonstrate that the proposed watermarking scheme achieves high detectability while generating text that outperforms previous watermarking methods in quality across various tasks.
arXiv Detail & Related papers (2024-07-17T18:52:12Z) - Provably Robust Multi-bit Watermarking for AI-generated Text [37.21416140194606]
Large Language Models (LLMs) have demonstrated remarkable capabilities of generating texts resembling human language.
They can be misused by criminals to create deceptive content, such as fake news and phishing emails.
Watermarking is a key technique to address these concerns, which embeds a message into a text.
arXiv Detail & Related papers (2024-01-30T08:46:48Z) - Adaptive Text Watermark for Large Language Models [8.100123266517299]
It is challenging to generate high-quality watermarked text while maintaining strong security, robustness, and the ability to detect watermarks without prior knowledge of the prompt or model.
This paper proposes an adaptive watermarking strategy to address this problem.
arXiv Detail & Related papers (2024-01-25T03:57:12Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
This study assesses the impact of watermarking on different capabilities of large language models (LLMs) from a cognitive science lens.
We introduce Watermarking with Mutual Exclusion (WatME) to seamlessly integrate watermarks.
arXiv Detail & Related papers (2023-11-16T11:58:31Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
Token-level watermarking inserts watermarks in the generated texts by altering the token probability distributions.
This watermarking algorithm alters the logits during generation, which can lead to a downgraded text quality.
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)
arXiv Detail & Related papers (2023-11-16T08:36:00Z) - Necessary and Sufficient Watermark for Large Language Models [29.764853985834403]
We propose the Necessary and Sufficient Watermark (NS-Watermark) for inserting watermarks into generated texts without degrading text quality.
We demonstrate that the NS-Watermark can generate more natural texts than existing watermarking methods.
Especially in machine translation tasks, the NS-Watermark can outperform the existing watermarking method by up to 30 BLEU scores.
arXiv Detail & Related papers (2023-10-02T00:48:51Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
Large language models (LLMs) generate texts with increasing fluency and realism.
Existing watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs.
We propose Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information.
arXiv Detail & Related papers (2023-07-29T14:11:15Z) - Provable Robust Watermarking for AI-Generated Text [41.5510809722375]
We propose a robust and high-quality watermark method, Unigram-Watermark.
We prove that our watermark method enjoys guaranteed generation quality, correctness in watermark detection, and is robust against text editing and paraphrasing.
arXiv Detail & Related papers (2023-06-30T07:24:32Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
We study the robustness of watermarked text after it is re-written by humans, paraphrased by a non-watermarked LLM, or mixed into a longer hand-written document.
We find that watermarks remain detectable even after human and machine paraphrasing.
We also consider a range of new detection schemes that are sensitive to short spans of watermarked text embedded inside a large document.
arXiv Detail & Related papers (2023-06-07T17:58:48Z) - Watermarking Text Generated by Black-Box Language Models [103.52541557216766]
A watermark-based method was proposed for white-box LLMs, allowing them to embed watermarks during text generation.
A detection algorithm aware of the list can identify the watermarked text.
We develop a watermarking framework for black-box language model usage scenarios.
arXiv Detail & Related papers (2023-05-14T07:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.