Designing fault-tolerant circuits using detector error models
- URL: http://arxiv.org/abs/2407.13826v1
- Date: Thu, 18 Jul 2024 18:00:05 GMT
- Title: Designing fault-tolerant circuits using detector error models
- Authors: Peter-Jan H. S. Derks, Alex Townsend-Teague, Ansgar G. Burchards, Jens Eisert,
- Abstract summary: We explore the powerful formalism of detector error models, which fully captures fault-tolerance at the circuit level.
We apply the formalism to three different levels of abstraction in the engineering cycle of fault-tolerant circuit designs.
- Score: 0.29998889086656577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error-correcting codes, such as subspace, subsystem, and Floquet codes, are typically constructed within the stabilizer formalism, which does not fully capture the idea of fault-tolerance needed for practical quantum computing applications. In this work, we explore the remarkably powerful formalism of detector error models, which fully captures fault-tolerance at the circuit level. We introduce the detector error model formalism in a pedagogical manner and provide several examples. Additionally, we apply the formalism to three different levels of abstraction in the engineering cycle of fault-tolerant circuit designs: finding robust syndrome extraction circuits, identifying efficient measurement schedules, and constructing fault-tolerant procedures. We enhance the surface code's resistance to measurement errors, devise short measurement schedules for color codes, and implement a more efficient fault-tolerant method for measuring logical operators.
Related papers
- Single-shot and measurement-based quantum error correction via fault complexes [0.0]
Photonics provides a viable path to a scalable fault-tolerant quantum computer.
Foliation is the construction of fault-tolerant graph states.
We introduce the fault complex, a representation of dynamic quantum error correction protocols.
arXiv Detail & Related papers (2024-10-16T18:52:24Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Note on simple and consistent gateset characterization including
calibration and decoherence errors [0.0]
Building high-fidelity quantum computers requires efficient methods for the characterization of gate errors.
We provide a method for determining the parameters corresponding to decoherence in a model gateset.
arXiv Detail & Related papers (2024-02-27T18:01:18Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Optical demonstration of quantum fault-tolerant threshold [2.6098148548199047]
A major challenge in practical quantum computation is the ineludible errors caused by the interaction of quantum systems with their environment.
Fault-tolerant schemes, in which logical qubits are encoded by several physical qubits, enable correct output of logical qubits under the presence of errors.
Here, we experimentally demonstrate the existence of the threshold in a special fault-tolerant protocol.
arXiv Detail & Related papers (2020-12-16T13:23:29Z) - Fault-Tolerant Operation of a Quantum Error-Correction Code [1.835073691235972]
Quantum error correction protects fragile quantum information by encoding it into a larger quantum system.
Fault-tolerant circuits contain the spread of errors while operating the logical qubit.
We show that fault-tolerant circuits enable highly accurate logical primitives in current quantum systems.
arXiv Detail & Related papers (2020-09-24T04:31:38Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.