論文の概要: Temperature Distribution Prediction in Laser Powder Bed Fusion using Transferable and Scalable Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2407.13838v1
- Date: Thu, 18 Jul 2024 18:14:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 21:29:41.801317
- Title: Temperature Distribution Prediction in Laser Powder Bed Fusion using Transferable and Scalable Graph Neural Networks
- Title(参考訳): 遷移型およびスケーラブルなグラフニューラルネットワークを用いたレーザー粉体層核融合の温度分布予測
- Authors: Riddhiman Raut, Amit Kumar Ball, Amrita Basak,
- Abstract要約: 本研究では, レーザ粉体融合プロセスにおける熱力学のシミュレーションにグラフニューラルネットワーク(GNN)を用いた新しい予測モデルを提案する。
提案モデルでは,L-PBFにおける熱伝達過程の複雑さを計算コストを大幅に削減する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study presents novel predictive models using Graph Neural Networks (GNNs) for simulating thermal dynamics in Laser Powder Bed Fusion (L-PBF) processes. By developing and validating Single-Laser GNN (SL-GNN) and Multi-Laser GNN (ML-GNN) surrogates, the research introduces a scalable data-driven approach that learns fundamental physics from small-scale Finite Element Analysis (FEA) simulations and applies them to larger domains. Achieving a Mean Absolute Percentage Error (MAPE) of 3.77% with the baseline SL-GNN model, GNNs effectively learn from high-resolution simulations and generalize well across larger geometries. The proposed models capture the complexity of the heat transfer process in L-PBF while significantly reducing computational costs. For example, a thermomechanical simulation for a 2 mm x 2 mm domain typically requires about 4 hours, whereas the SL-GNN model can predict thermal distributions almost instantly. Calibrating models to larger domains enhances predictive performance, with significant drops in MAPE for 3 mm x 3 mm and 4 mm x 4 mm domains, highlighting the scalability and efficiency of this approach. Additionally, models show a decreasing trend in Root Mean Square Error (RMSE) when tuned to larger domains, suggesting potential for becoming geometry-agnostic. The interaction of multiple lasers complicates heat transfer, necessitating larger model architectures and advanced feature engineering. Using hyperparameters from Gaussian process-based Bayesian optimization, the best ML-GNN model demonstrates a 46.4% improvement in MAPE over the baseline ML-GNN model. In summary, this approach enables more efficient and flexible predictive modeling in L-PBF additive manufacturing.
- Abstract(参考訳): 本研究では,レーザー粉体融合(L-PBF)プロセスにおける熱力学のシミュレーションにグラフニューラルネットワーク(GNN)を用いた新しい予測モデルを提案する。
シングルレーザーGNN (SL-GNN) とマルチレーザーGNN (ML-GNN) のサロゲートを開発し検証することにより、小規模有限要素解析 (FEA) シミュレーションから基礎物理学を学習し、それらをより大きな領域に適用するスケーラブルなデータ駆動アプローチを導入する。
ベースラインSL-GNNモデルにより平均絶対誤差(MAPE)が3.77%に達すると、GNNは高分解能シミュレーションから効果的に学習し、より大きなジオメトリにわたってうまく一般化する。
提案モデルでは,L-PBFにおける熱伝達過程の複雑さを計算コストを大幅に削減する。
例えば、2mm x 2mm領域の熱力学シミュレーションは通常約4時間を要するが、SL-GNNモデルはほぼ瞬時に熱分布を予測することができる。
モデルをより大きな領域にキャリブレーションすることで予測性能が向上し、3 mm x 3 mm と 4 mm x 4 mm の MAPE が大幅に低下し、このアプローチのスケーラビリティと効率性が強調される。
さらに、ルート平均角誤差(RMSE)は、より大きな領域に合わせると減少傾向を示し、幾何学に依存しない可能性が示唆されている。
複数のレーザーの相互作用は熱伝達を複雑にし、より大きなモデルアーキテクチャと高度な特徴工学を必要とする。
ガウス過程に基づくベイズ最適化のハイパーパラメータを用いて、最良のML-GNNモデルは、ベースラインのML-GNNモデルよりも46.4%改善されたMAPEを示す。
要約すると、この手法はL-PBF添加物製造においてより効率的で柔軟な予測モデルを可能にする。
関連論文リスト
- Thermal-Mechanical Physics Informed Deep Learning For Fast Prediction of Thermal Stress Evolution in Laser Metal Deposition [0.0]
金属添加物製造(AM)における熱応力の進化を理解することは高品質な部品の製造に不可欠である。
機械学習(ML)の最近の進歩は、金属AMの複雑な多物理問題をモデル化する大きな可能性を示している。
本研究では、物理法則を深層ニューラルネットワーク(NN)に組み込んだ物理インフォームドニューラルネットワーク(PINN)フレームワークを導入し、温度と熱応力の進化を予測する。
論文 参考訳(メタデータ) (2024-12-25T05:37:48Z) - Neural P$^3$M: A Long-Range Interaction Modeling Enhancer for Geometric
GNNs [66.98487644676906]
我々は,幾何学的GNNの汎用エンハンサーであるNeural P$3$Mを導入し,その機能範囲を拡大する。
幅広い分子系に柔軟性を示し、エネルギーと力を予測する際、顕著な精度を示す。
また、さまざまなアーキテクチャを統合しながら、OE62データセットで平均22%の改善も達成している。
論文 参考訳(メタデータ) (2024-09-26T08:16:59Z) - Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing [9.639126204112937]
デジタルツイン(DT)は、現実世界の物理的プロセスの仮想ツインとして振る舞う。
L-PBFプロセスの閉ループフィードバック制御のためのディープ・ニューラル演算子を用いたDTの計算フレームワークを提案する。
開発したDTは、AMプロセスのガイドと高品質製造の促進を目的としている。
論文 参考訳(メタデータ) (2024-05-13T03:53:46Z) - Multi-fidelity surrogate with heterogeneous input spaces for modeling melt pools in laser-directed energy deposition [0.0]
MFモデリング(Multi-fidelity Modeling)は、様々なフィデリティソースからデータをインテリジェントにブレンドできる強力な統計手法である。
メルトプールモデルの階層をマージするためにMFサロゲートを使用する際の大きな課題は、入力空間における可変性である。
本稿では, 様々な複雑さのモデルを統合することで, 溶融プール形状を予測するためのMFサロゲート構築手法を提案する。
論文 参考訳(メタデータ) (2024-03-19T20:12:46Z) - Capturing Local Temperature Evolution during Additive Manufacturing
through Fourier Neural Operators [0.0]
本稿では, 加法製造過程における局所的な温度変化を捉えたデータ駆動モデルを提案する。
直接エネルギー沈着過程における不連続なガレルキン有限要素法に基づく数値シミュレーションで検証した。
その結果、このモデルはR2$で測定された高忠実度を実現し、トレーニングプロセスに含まれていない測地に対する一般化性を維持した。
論文 参考訳(メタデータ) (2023-07-04T16:17:59Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine(fm)は、機能間の高次インタラクションを自動的に学習し、手動の機能エンジニアリングを必要とせずに予測を行うことができる。
本研究では,スパース予測解析のためのQFM(Quaternion factorization Machine)とQNFM(Quaternion neural factorization Machine)を提案する。
論文 参考訳(メタデータ) (2021-04-05T00:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。