Temperature Distribution Prediction in Laser Powder Bed Fusion using Transferable and Scalable Graph Neural Networks
- URL: http://arxiv.org/abs/2407.13838v1
- Date: Thu, 18 Jul 2024 18:14:47 GMT
- Title: Temperature Distribution Prediction in Laser Powder Bed Fusion using Transferable and Scalable Graph Neural Networks
- Authors: Riddhiman Raut, Amit Kumar Ball, Amrita Basak,
- Abstract summary: This study presents novel predictive models using Graph Neural Networks (GNNs) for simulating thermal dynamics in Laser Powder Bed Fusion processes.
The proposed models capture the complexity of the heat transfer process in L-PBF while significantly reducing computational costs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study presents novel predictive models using Graph Neural Networks (GNNs) for simulating thermal dynamics in Laser Powder Bed Fusion (L-PBF) processes. By developing and validating Single-Laser GNN (SL-GNN) and Multi-Laser GNN (ML-GNN) surrogates, the research introduces a scalable data-driven approach that learns fundamental physics from small-scale Finite Element Analysis (FEA) simulations and applies them to larger domains. Achieving a Mean Absolute Percentage Error (MAPE) of 3.77% with the baseline SL-GNN model, GNNs effectively learn from high-resolution simulations and generalize well across larger geometries. The proposed models capture the complexity of the heat transfer process in L-PBF while significantly reducing computational costs. For example, a thermomechanical simulation for a 2 mm x 2 mm domain typically requires about 4 hours, whereas the SL-GNN model can predict thermal distributions almost instantly. Calibrating models to larger domains enhances predictive performance, with significant drops in MAPE for 3 mm x 3 mm and 4 mm x 4 mm domains, highlighting the scalability and efficiency of this approach. Additionally, models show a decreasing trend in Root Mean Square Error (RMSE) when tuned to larger domains, suggesting potential for becoming geometry-agnostic. The interaction of multiple lasers complicates heat transfer, necessitating larger model architectures and advanced feature engineering. Using hyperparameters from Gaussian process-based Bayesian optimization, the best ML-GNN model demonstrates a 46.4% improvement in MAPE over the baseline ML-GNN model. In summary, this approach enables more efficient and flexible predictive modeling in L-PBF additive manufacturing.
Related papers
- Neural P$^3$M: A Long-Range Interaction Modeling Enhancer for Geometric
GNNs [66.98487644676906]
We introduce Neural P$3$M, a versatile enhancer of geometric GNNs to expand the scope of their capabilities.
It exhibits flexibility across a wide range of molecular systems and demonstrates remarkable accuracy in predicting energies and forces.
It also achieves an average improvement of 22% on the OE62 dataset while integrating with various architectures.
arXiv Detail & Related papers (2024-09-26T08:16:59Z) - Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing [9.639126204112937]
A digital twin (DT) behaves as a virtual twin of the real-world physical process.
We present a deep neural operator enabled computational framework of the DT for closed-loop feedback control of the L-PBF process.
The developed DT is envisioned to guide the AM process and facilitate high-quality manufacturing.
arXiv Detail & Related papers (2024-05-13T03:53:46Z) - Multi-fidelity surrogate with heterogeneous input spaces for modeling melt pools in laser-directed energy deposition [0.0]
Multi-fidelity (MF) modeling is a powerful statistical approach that can intelligently blend data from varied fidelity sources.
One major challenge in using MF surrogates to merge a hierarchy of melt pool models is the variability in input spaces.
This paper introduces a novel approach for constructing an MF surrogate for predicting melt pool geometry by integrating models of varying complexity.
arXiv Detail & Related papers (2024-03-19T20:12:46Z) - Capturing Local Temperature Evolution during Additive Manufacturing
through Fourier Neural Operators [0.0]
This paper presents a data-driven model that captures the local temperature evolution during the additive manufacturing process.
It is tested on numerical simulations based on the Discontinuous Galerkin Finite Element Method for the Direct Energy Deposition process.
The results demonstrate that the model achieves high fidelity as measured by $R2$ and maintains generalizability to geometries that were not included in the training process.
arXiv Detail & Related papers (2023-07-04T16:17:59Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Deep learning for surrogate modelling of 2D mantle convection [1.7499351967216341]
We show that deep learning techniques can produce reliable parameterized surrogates of partial differential equations.
We first use convolutional autoencoders to compress the temperature fields by a factor of 142.
We then use FNN and long-short term memory networks (LSTM) to predict the compressed fields.
arXiv Detail & Related papers (2021-08-23T12:13:04Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine (FM) is capable of automatically learning high-order interactions among features to make predictions without the need for manual feature engineering.
We propose the quaternion factorization machine (QFM) and quaternion neural factorization machine (QNFM) for sparse predictive analytics.
arXiv Detail & Related papers (2021-04-05T00:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.