論文の概要: Improving Malware Detection with Adversarial Domain Adaptation and Control Flow Graphs
- arxiv url: http://arxiv.org/abs/2407.13918v1
- Date: Thu, 18 Jul 2024 22:06:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 19:23:11.971975
- Title: Improving Malware Detection with Adversarial Domain Adaptation and Control Flow Graphs
- Title(参考訳): 逆領域適応と制御フローグラフによるマルウェア検出の改善
- Authors: Adrian Shuai Li, Arun Iyengar, Ashish Kundu, Elisa Bertino,
- Abstract要約: 戦闘コンセプトの既存のソリューションは、アクティブラーニングを使用する。
グラフニューラルネットワークを利用してマルウェア制御後のフローグラフの保持情報を学習する手法を提案する。
提案手法は,バイナリ分類タスクにおける未知のマルウェアファミリーの予測と,マルチクラス環境でのドリフトされたマルウェアファミリーの予測において,大幅な向上を示すものである。
- 参考スコア(独自算出の注目度): 10.352741619176383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the application of deep learning for malware classification, it is crucial to account for the prevalence of malware evolution, which can cause trained classifiers to fail on drifted malware. Existing solutions to combat concept drift use active learning: they select new samples for analysts to label, and then retrain the classifier with the new labels. Our key finding is, the current retraining techniques do not achieve optimal results. These models overlook that updating the model with scarce drifted samples requires learning features that remain consistent across pre-drift and post-drift data. Furthermore, the model should be capable of disregarding specific features that, while beneficial for classification of pre-drift data, are absent in post-drift data, thereby preventing prediction degradation. In this paper, we propose a method that learns retained information in malware control flow graphs post-drift by leveraging graph neural network with adversarial domain adaptation. Our approach considers drift-invariant features within assembly instructions and flow of code execution. We further propose building blocks for more robust evaluation of drift adaptation techniques that computes statistically distant malware clusters. Our approach is compared with the previously published training methods in active learning systems, and the other domain adaptation technique. Our approach demonstrates a significant enhancement in predicting unseen malware family in a binary classification task and predicting drifted malware families in a multi-class setting. In addition, we assess alternative malware representations. The best results are obtained when our adaptation method is applied to our graph representations.
- Abstract(参考訳): マルウェア分類へのディープラーニングの適用においては、学習された分類器がドリフトしたマルウェアで失敗する可能性があるマルウェア進化の頻度を考慮することが重要である。
彼らはアナリストがラベルを付けるための新しいサンプルを選択し、新しいラベルで分類器を再訓練する。
我々の重要な発見は、現在のリトレーニング技術は最適な結果が得られていないことである。
これらのモデルは、ドリフトしたサンプルが不足しているモデルのアップデートには、ドリフト前とドリフト後のデータ間で一貫性のある学習機能が必要であることを見落としている。
さらに, このモデルでは, プレドリフトデータの分類に有用であるが, 後ドリフトデータには欠落している特定の特徴を無視でき, 予測劣化を防止できる。
本稿では,グラフニューラルネットワークと対向領域適応を利用して,マルウェア制御後のフローグラフの保持情報を学習する手法を提案する。
本手法では,アセンブリ命令とコード実行フローのドリフト不変性を考察する。
さらに,統計的に離れたマルウェアクラスタを計算し,より堅牢なドリフト適応手法の評価のためのビルディングブロックを提案する。
本手法は,アクティブラーニングシステムにおける事前学習手法と,他の領域適応手法との比較を行った。
提案手法は,バイナリ分類タスクにおける未知のマルウェアファミリーの予測と,マルチクラス環境でのドリフトされたマルウェアファミリーの予測において,大幅な向上を示すものである。
さらに,代替マルウェアの表現も評価する。
グラフ表現に適応法を適用すると,最もよい結果が得られる。
関連論文リスト
- Cluster Analysis and Concept Drift Detection in Malware [1.3812010983144798]
概念ドリフト(concept drift)とは、機械学習モデルの精度に影響を与えるデータの特性の漸進的または突然の変化を指す。
マルウェア領域におけるコンセプトドリフトを検出するためのクラスタリングに基づく手法を提案し,解析する。
論文 参考訳(メタデータ) (2025-02-19T22:42:30Z) - DREAM: Combating Concept Drift with Explanatory Detection and Adaptation in Malware Classification [15.912839650827589]
マルウェアの急速な進化、特に新しい家系では、分類精度をほぼランダムなレベルに低下させる可能性がある。
これまでの研究は主に漂流サンプルの検出に重点を置いており、専門家主導の分析とモデル再訓練のためのラベル付けに頼っていた。
DREAMは、既存のドリフト検出器の能力を超えるように設計された新しいシステムである。
論文 参考訳(メタデータ) (2024-05-07T07:55:45Z) - MORPH: Towards Automated Concept Drift Adaptation for Malware Detection [0.7499722271664147]
コンセプトドリフトはマルウェア検出にとって重要な課題である。
自己学習は、コンセプトドリフトを緩和するための有望なアプローチとして現れています。
擬似ラベルに基づく効果的なドリフト適応法であるMORPHを提案する。
論文 参考訳(メタデータ) (2024-01-23T14:25:43Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
業界関係者は、モデルが数億台のマシンにデプロイされているため、マルウェア検出精度の小さな改善に気を配っている。
学術研究はしばしば1万のサンプルの順序で公開データセットに制限される。
利用可能なサンプルのプールから難易度ベンチマークを生成するためのアプローチを考案する。
論文 参考訳(メタデータ) (2023-12-25T21:25:55Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - Optimized Deep Learning Models for Malware Detection under Concept Drift [0.0]
ドリフトに対するベースラインニューラルネットワークを改善するためのモデルに依存しないプロトコルを提案する。
本稿では,最新の検証セットによる特徴量削減とトレーニングの重要性を示し,Drift-Resilient Binary Cross-Entropyという損失関数を提案する。
改良されたモデルは有望な結果を示し、ベースラインモデルよりも15.2%多いマルウェアを検出する。
論文 参考訳(メタデータ) (2023-08-21T16:13:23Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
現在のディープラーニングモデルは、新しいクラスを学ぶ際に古い知識を破滅的に忘れることによって特徴づけられる。
人間の脳における新しい知識の学習プロセスに着想を得て,連続学習のためのベイズ生成モデルを提案する。
論文 参考訳(メタデータ) (2022-04-28T08:41:51Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z) - Exploring Optimal Deep Learning Models for Image-based Malware Variant
Classification [3.8073142980733]
本研究では,深層学習モデルの違いがマルウェアの分類精度に与える影響について検討した。
その結果,最新のディープラーニングモデルの1つを比較的低い転送度で微調整することで,最も高い分類精度が得られることがわかった。
論文 参考訳(メタデータ) (2020-04-10T23:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。