A Multi-Messenger Search for Exotic Field Emission with a Global Magnetometer Network
- URL: http://arxiv.org/abs/2407.13919v2
- Date: Tue, 20 May 2025 22:52:28 GMT
- Title: A Multi-Messenger Search for Exotic Field Emission with a Global Magnetometer Network
- Authors: Sami S. Khamis, Ibrahim A. Sulai, Paul Hamilton, S. Afach, B. C. Buchler, D. Budker, N. L. Figueroa, R. Folman, D. Gavilán-Martín, M. Givon, Z. D. Grujić, H. Guo, M. P. Hedges, D. F. Jackson Kimball, D. Kim, E. Klinger, T. Kornack, A. Kryemadhi, N. Kukowski, G. Lukasiewicz, H. Masia-Roig, M. Padniuk, C. A. Palm, S. Y. Park, X. Peng, M. Pospelov, S. Pustelny, Y. Rosenzweig, O. M. Ruimi, P. C. Segura, T. Scholtes, Y. K. Semertzidis, Y. C. Shin, J. E. Stalnaker, D. Tandon, A. Weis, A. Wickenbrock, T. Wilson, T. Wu, J. Zhang, Y. Zhao,
- Abstract summary: Quantum sensor networks in combination with traditional astronomical observations are emerging as a novel modality for multi-messenger astronomy.<n>We develop a data-driven approach to model the sensitivity of a quantum sensor network to astrophysical signals as a consequence of beyond-the-Standard Model (BSM) physics.<n>We use this analysis method to carry out the first direct search utilizing a terrestrial network of precision quantum sensors for BSM fields emitted during a black hole merger.
- Score: 0.11277060638173796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum sensor networks in combination with traditional astronomical observations are emerging as a novel modality for multi-messenger astronomy. Here we develop a generic analysis framework that uses a data-driven approach to model the sensitivity of a quantum sensor network to astrophysical signals as a consequence of beyond-the-Standard Model (BSM) physics. The analysis method evaluates correlations between sensors to search for BSM signals coincident with astrophysical triggers such as black hole mergers, supernovae, or fast radio bursts. Complementary to astroparticle approaches that search for particlelike signals (e.g. WIMPs), quantum sensors are sensitive to wavelike signals from exotic quantum fields. This analysis method can be applied to networks of different types of quantum sensors, such as atomic clocks, matter-wave interferometers, and nuclear clocks, which can probe many types of interactions between BSM fields and standard model particles. We use this analysis method to carry out the first direct search utilizing a terrestrial network of precision quantum sensors for BSM fields emitted during a black hole merger. Specifically we use the Global Network of Optical Magnetometers for Exotic physics (GNOME) to perform a search for exotic low-mass field (ELF) bursts generated in coincidence with a gravitational wave signal from a binary black hole merger (GW200311 115853) detected by LIGO/Virgo on the 11th of March 2020. The associated gravitational wave heralds the arrival of the ELF burst that interacts with the spins of fermions in the magnetometers. This enables GNOME to serve as a tool for multi-messenger astronomy. Our search found no significant events, and consequently we place the first lab-based limits on combinations of ELF production and coupling parameters.
Related papers
- Rydberg Atomic Quantum Receivers for Multi-Target DOA Estimation [77.32323151235285]
Rydberg atomic quantum receivers (RAQRs) have emerged as a promising solution to classical wireless communication and sensing.<n>We first conceive a Rydberg atomic quantum uniform linear array (RAQ-ULA) aided wireless receiver for multi-target DOA detection and propose the corresponding signal model of this sensing system.<n>To solve this sensor gain mismatch problem, we propose the Rydberg atomic quantum ESPRIT (RAQ-ESPRIT) relying on our model.
arXiv Detail & Related papers (2025-01-06T07:42:23Z) - A Rotating-Wave Comagnetometer Detector for Particle Physics [1.1510009152620668]
We develop a technique to suppress magnetic noise at tunable frequencies while maintaining high sensitivity to target signals.
This work paves the way for a new class of tabletop experiments aimed at searching for new physics.
arXiv Detail & Related papers (2024-10-21T18:00:01Z) - Rydberg Atomic Quantum Receivers for Classical Wireless Communication and Sensing [71.94873601156017]
Rydberg atomic quantum receivers (RAQR) are emerging quantum precision sensing platforms designed for receiving radio frequency (RF) signals.<n>RAQRs realize RF-to-optical conversions based on light-atom interactions.<n>Initial experimental studies have demonstrated their capabilities in classical wireless communications and sensing.
arXiv Detail & Related papers (2024-09-22T15:55:02Z) - Near Infrared Quantum Ghost Spectroscopy for Threats Detection [1.9404443846394965]
We build on the idea of the Quantum Ghost Spectroscopy (QGS) to target specific applications in the detection of possible threats.
The time-frequency domain reveals a huge potential for several applications and frequency correlations represent a versatile tool.
The use of nondegenerate sources of correlated photons allowed to reveal spectral features in the near infrared wavelengths employing the usual detectors for the visible region.
arXiv Detail & Related papers (2024-09-01T20:32:51Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
We introduce an innovative Deep Learning-based Quantum Sensing scheme.
It enables optical quantum sensors to attain Heisenberg limit (HL) in agnostic environments.
Our findings offer a new lens through which to accelerate optical quantum sensing tasks.
arXiv Detail & Related papers (2023-11-13T09:46:05Z) - NeoSySPArtaN: A Neuro-Symbolic Spin Prediction Architecture for
higher-order multipole waveforms from eccentric Binary Black Hole mergers
using Numerical Relativity [0.0]
We present a novel Neuro-Symbolic Architecture (NSA) that combines the power of neural networks and symbolic regression.
Our results provide a robust and interpretable framework for predicting spin magnitudes in mergers.
arXiv Detail & Related papers (2023-07-20T16:30:51Z) - What can a GNOME do? Search targets for the Global Network of Optical
Magnetometers for Exotic physics searches [0.3508253542807453]
We present an overview of the Global Network of Optical Magnetometers for Exotic physics searches (GNOME)
GNOME searches for spatially and temporally correlated signals due to torques on atomic spins from exotic fields of astrophysical origin.
We survey the temporal characteristics of a variety of possible signals currently under investigation such as those from topological defect dark matter (axion-like particle domain walls), axion-like particle stars, solitons of complex-valued fields (Q-balls), fluctuations of bosonic dark matter fields, a solar axion-like particle halo, and bursts of ultralight bosonic fields produced by cataclysmic
arXiv Detail & Related papers (2023-05-02T21:13:26Z) - Searching for long faint astronomical high energy transients: a data
driven approach [1.5851170136095292]
We introduce a new framework to assess the background count rate of a space-born, high energy detector.
We employ a Neural Network (NN) to estimate the background lightcurves on different timescales.
We test the new software on archival data from the NASA Fermi Gamma-ray Burst Monitor (GBM), which has a collecting area and background level of the same order of magnitude to those of HERMES Pathfinder.
arXiv Detail & Related papers (2023-03-28T12:47:00Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Detection of gravitational-wave signals from binary neutron star mergers
using machine learning [52.77024349608834]
We introduce a novel neural-network based machine learning algorithm that uses time series strain data from gravitational-wave detectors.
We find an improvement by a factor of 6 in sensitivity to signals with signal-to-noise ratio below 25.
A conservative estimate indicates that our algorithm introduces on average 10.2 s of latency between signal arrival and generating an alert.
arXiv Detail & Related papers (2020-06-02T10:20:11Z) - Versatile Atomic Magnetometry Assisted by Bayesian Inference [0.0]
Quantum sensors translate external fields into a periodic response whose frequency is then determined by analyses performed in Fourier space.
In practice, however, quantum sensors are able to detect fields only in a narrow range of amplitudes and frequencies.
A departure from this range, as well as the presence of significant noise sources and short detection times, lead to a loss of the linear relationship between the response of the sensor and the target field.
arXiv Detail & Related papers (2020-03-04T16:01:26Z) - Quantum sensor networks as exotic field telescopes for multi-messenger
astronomy [0.0]
Quantum sensor networks could be used to search for astrophysical signals predicted by beyond-standard-model (BSM) theories.
We consider the case where high-energy astrophysical events could produce intense bursts of exotic low-mass fields (ELFs)
We find that, indeed, such precision quantum sensor networks can function as ELF telescopes to detect signals from sources generating ELF bursts of sufficient intensity.
arXiv Detail & Related papers (2020-02-11T12:47:01Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.