Decomposed Direct Preference Optimization for Structure-Based Drug Design
- URL: http://arxiv.org/abs/2407.13981v2
- Date: Mon, 28 Oct 2024 02:12:08 GMT
- Title: Decomposed Direct Preference Optimization for Structure-Based Drug Design
- Authors: Xiwei Cheng, Xiangxin Zhou, Yuwei Yang, Yu Bao, Quanquan Gu,
- Abstract summary: We propose DecompDPO, a structure-based optimization method to align diffusion models with pharmaceutical needs.
DecompDPO can be effectively used for two main purposes: fine-tuning pretrained diffusion models for molecule generation across various protein families, and molecular optimization given a specific protein subpocket after generation.
- Score: 47.561983733291804
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion models have achieved promising results for Structure-Based Drug Design (SBDD). Nevertheless, high-quality protein subpocket and ligand data are relatively scarce, which hinders the models' generation capabilities. Recently, Direct Preference Optimization (DPO) has emerged as a pivotal tool for aligning generative models with human preferences. In this paper, we propose DecompDPO, a structure-based optimization method aligns diffusion models with pharmaceutical needs using multi-granularity preference pairs. DecompDPO introduces decomposition into the optimization objectives and obtains preference pairs at the molecule or decomposed substructure level based on each objective's decomposability. Additionally, DecompDPO introduces a physics-informed energy term to ensure reasonable molecular conformations in the optimization results. Notably, DecompDPO can be effectively used for two main purposes: (1) fine-tuning pretrained diffusion models for molecule generation across various protein families, and (2) molecular optimization given a specific protein subpocket after generation. Extensive experiments on the CrossDocked2020 benchmark show that DecompDPO significantly improves model performance, achieving up to 95.2% Med. High Affinity and a 36.2% success rate for molecule generation, and 100% Med. High Affinity and a 52.1% success rate for molecular optimization.
Related papers
- DrugImproverGPT: A Large Language Model for Drug Optimization with Fine-Tuning via Structured Policy Optimization [53.27954325490941]
Finetuning a Large Language Model (LLM) is crucial for generating results towards specific objectives.
This research introduces a novel reinforcement learning algorithm to finetune a drug optimization LLM-based generative model.
arXiv Detail & Related papers (2025-02-11T04:00:21Z) - BoKDiff: Best-of-K Diffusion Alignment for Target-Specific 3D Molecule Generation [0.0]
Structures-based drug design (SBDD) leverages the 3D structure of biomolecular targets to guide the creation of new therapeutic agents.
Recent advances in generative models, including geometric models and deep learning, have demonstrated promise in optimizing ligand generation.
We propose BoKDiff, a novel framework that enhances ligand generation by combining multi-objective optimization and Best-of-K alignment methodologies.
arXiv Detail & Related papers (2025-01-26T18:29:11Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - TAGMol: Target-Aware Gradient-guided Molecule Generation [19.977071499171903]
3D generative models have shown significant promise in structure-based drug design (SBDD)
We decouple the problem into molecular generation and property prediction.
The latter synergistically guides the diffusion sampling process, facilitating guided diffusion and resulting in the creation of meaningful molecules with the desired properties.
We call this guided molecular generation process as TAGMol.
arXiv Detail & Related papers (2024-06-03T14:43:54Z) - PILOT: Equivariant diffusion for pocket conditioned de novo ligand generation with multi-objective guidance via importance sampling [8.619610909783441]
We propose an in-silico approach for the $textitde novo$ generation of 3D ligand structures using the equivariant diffusion model PILOT.
Its multi-objective-based importance sampling strategy is designed to direct the model towards molecules that exhibit desired characteristics.
We employ PILOT to generate novel metrics for unseen protein pockets from the Kinodata-3D dataset.
arXiv Detail & Related papers (2024-05-23T17:58:28Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.