Decomposed Direct Preference Optimization for Structure-Based Drug Design
- URL: http://arxiv.org/abs/2407.13981v2
- Date: Mon, 28 Oct 2024 02:12:08 GMT
- Title: Decomposed Direct Preference Optimization for Structure-Based Drug Design
- Authors: Xiwei Cheng, Xiangxin Zhou, Yuwei Yang, Yu Bao, Quanquan Gu,
- Abstract summary: We propose DecompDPO, a structure-based optimization method to align diffusion models with pharmaceutical needs.
DecompDPO can be effectively used for two main purposes: fine-tuning pretrained diffusion models for molecule generation across various protein families, and molecular optimization given a specific protein subpocket after generation.
- Score: 47.561983733291804
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion models have achieved promising results for Structure-Based Drug Design (SBDD). Nevertheless, high-quality protein subpocket and ligand data are relatively scarce, which hinders the models' generation capabilities. Recently, Direct Preference Optimization (DPO) has emerged as a pivotal tool for aligning generative models with human preferences. In this paper, we propose DecompDPO, a structure-based optimization method aligns diffusion models with pharmaceutical needs using multi-granularity preference pairs. DecompDPO introduces decomposition into the optimization objectives and obtains preference pairs at the molecule or decomposed substructure level based on each objective's decomposability. Additionally, DecompDPO introduces a physics-informed energy term to ensure reasonable molecular conformations in the optimization results. Notably, DecompDPO can be effectively used for two main purposes: (1) fine-tuning pretrained diffusion models for molecule generation across various protein families, and (2) molecular optimization given a specific protein subpocket after generation. Extensive experiments on the CrossDocked2020 benchmark show that DecompDPO significantly improves model performance, achieving up to 95.2% Med. High Affinity and a 36.2% success rate for molecule generation, and 100% Med. High Affinity and a 52.1% success rate for molecular optimization.
Related papers
- Pathway-Guided Optimization of Deep Generative Molecular Design Models for Cancer Therapy [1.8210200978176423]
The junction tree variational autoencoder (JTVAE) has been shown to be an efficient generative model.
We show how a pharmacodynamic model, assessing the therapeutic efficacy of a drug-like small molecule, can be incorporated for effective latent space optimization.
arXiv Detail & Related papers (2024-11-05T19:20:30Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal tool for aligning large language models (LLMs) with human preferences.
Direct Preference Optimization (DPO) formulates RLHF as a policy optimization problem without explicitly estimating the reward function.
We propose a general Accelerated Preference Optimization (APO) framework, which unifies many existing preference optimization algorithms.
arXiv Detail & Related papers (2024-10-08T18:51:01Z) - Fragment-Masked Molecular Optimization [37.20936761888007]
We propose a fragment-masked molecular optimization method based on phenotypic drug discovery (PDD)
PDD-based molecular optimization can reduce potential safety risks while optimizing phenotypic activity, thereby increasing the likelihood of clinical success.
The overall experiments demonstrate that the in-silico optimization success rate reaches 94.4%, with an average efficacy increase of 5.3%.
arXiv Detail & Related papers (2024-08-17T06:00:58Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - TAGMol: Target-Aware Gradient-guided Molecule Generation [19.977071499171903]
3D generative models have shown significant promise in structure-based drug design (SBDD)
We decouple the problem into molecular generation and property prediction.
The latter synergistically guides the diffusion sampling process, facilitating guided diffusion and resulting in the creation of meaningful molecules with the desired properties.
We call this guided molecular generation process as TAGMol.
arXiv Detail & Related papers (2024-06-03T14:43:54Z) - PILOT: Equivariant diffusion for pocket conditioned de novo ligand generation with multi-objective guidance via importance sampling [8.619610909783441]
We propose an in-silico approach for the $textitde novo$ generation of 3D ligand structures using the equivariant diffusion model PILOT.
Its multi-objective-based importance sampling strategy is designed to direct the model towards molecules that exhibit desired characteristics.
We employ PILOT to generate novel metrics for unseen protein pockets from the Kinodata-3D dataset.
arXiv Detail & Related papers (2024-05-23T17:58:28Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.