論文の概要: Towards Extracting Ethical Concerns-related Software Requirements from App Reviews
- arxiv url: http://arxiv.org/abs/2407.14023v1
- Date: Fri, 19 Jul 2024 04:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:53:17.652927
- Title: Towards Extracting Ethical Concerns-related Software Requirements from App Reviews
- Title(参考訳): 倫理的問題に関連するソフトウェア要件をアプリレビューから抽出する
- Authors: Aakash Sorathiya, Gouri Ginde,
- Abstract要約: 本研究は、Uberモバイルアプリ(人気のタクシー/ライドアプリ)のアプリレビューを分析した。
アプリレビューからソフトウェア要件を抽出するために知識グラフ(KG)モデルを活用する新しいアプローチを提案する。
私たちのフレームワークは,関連するエンティティと関係を持ったオントロジーを開発すること,アプリレビューから重要なエンティティを抽出すること,それら間のコネクションを作成すること,という3つの主要コンポーネントで構成されています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As mobile applications become increasingly integral to our daily lives, concerns about ethics have grown drastically. Users share their experiences, report bugs, and request new features in application reviews, often highlighting safety, privacy, and accountability concerns. Approaches using machine learning techniques have been used in the past to identify these ethical concerns. However, understanding the underlying reasons behind them and extracting requirements that could address these concerns is crucial for safer software solution development. Thus, we propose a novel approach that leverages a knowledge graph (KG) model to extract software requirements from app reviews, capturing contextual data related to ethical concerns. Our framework consists of three main components: developing an ontology with relevant entities and relations, extracting key entities from app reviews, and creating connections between them. This study analyzes app reviews of the Uber mobile application (a popular taxi/ride app) and presents the preliminary results from the proposed solution. Initial results show that KG can effectively capture contextual data related to software ethical concerns, the underlying reasons behind these concerns, and the corresponding potential requirements.
- Abstract(参考訳): モバイルアプリケーションが私たちの日常生活にますます不可欠なものになっていくにつれて、倫理に関する懸念は急速に高まっている。
ユーザは自身のエクスペリエンスを共有し、バグを報告し、アプリケーションレビューで新機能をリクエストする。
機械学習技術を用いたアプローチは、これらの倫理的関心事を特定するために過去にも用いられてきた。
しかしながら、それらの背後にある根本的な理由を理解し、これらの懸念に対処できる要件を抽出することは、より安全なソフトウェアソリューション開発に不可欠です。
そこで我々は、知識グラフ(KG)モデルを利用して、アプリレビューからソフトウェア要件を抽出し、倫理的懸念に関連するコンテキストデータをキャプチャする新しいアプローチを提案する。
私たちのフレームワークは,関連するエンティティと関係を持ったオントロジーを開発すること,アプリレビューから重要なエンティティを抽出すること,それら間のコネクションを作成すること,という3つの主要コンポーネントで構成されています。
本研究では、Uberモバイルアプリケーション(タクシー/ライドアプリ)のアプリレビューを分析し、提案したソリューションの予備的な結果を示す。
最初の結果は、KGがソフトウェア倫理上の懸念、これらの懸念の背後にある根本的な理由、およびそれに対応する潜在的な要件に関連するコンテキストデータを効果的にキャプチャできることを示している。
関連論文リスト
- Beyond Keywords: A Context-based Hybrid Approach to Mining Ethical Concern-related App Reviews [0.0]
倫理的懸念に関連するアプリケーションレビューは一般的にドメイン固有の言語を使用し、より多様な語彙を使って表現される。
本研究では、自然言語推論(NLI)とデコーダ限定(LLaMAライク)大規模言語モデル(LLM)を組み合わせて、倫理的関心事に関するアプリレビューを大規模に抽出する、新しい自然言語処理(NLI)アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-11T22:08:48Z) - Metamorphic Debugging for Accountable Software [8.001739956625483]
法律書を正式な仕様に翻訳することは、一つの課題である。
クエリ(オラクル問題)に対する決定的な'真実'の欠如も問題である。
我々は,これらの課題に,関係仕様に焦点を合わせることで対処できることを提案する。
論文 参考訳(メタデータ) (2024-09-24T14:45:13Z) - Ethical software requirements from user reviews: A systematic literature review [0.0]
このSLRは,既存の倫理的要件の特定・分析を目的としている。
倫理的要件収集は、ソフトウェアアプリケーションにおける意思決定におけるMLとAIベースのアプローチの台頭により、最近、研究コミュニティに対する大きな関心を呼び起こした。
論文 参考訳(メタデータ) (2024-09-18T19:56:19Z) - Ethical-Lens: Curbing Malicious Usages of Open-Source Text-to-Image Models [51.69735366140249]
我々はEthical-Lensというフレームワークを紹介した。
Ethical-Lensは、毒性とバイアス次元をまたいだテキストと画像のモデルにおける価値アライメントを保証する。
実験の結果、Ethical-Lensは商業モデルに匹敵するレベルまでアライメント能力を向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T11:38:25Z) - Eagle: Ethical Dataset Given from Real Interactions [74.7319697510621]
社会的バイアス、毒性、不道徳な問題を示すChatGPTとユーザ間の実際のインタラクションから抽出されたデータセットを作成します。
我々の実験では、イーグルは、そのような倫理的課題の評価と緩和のために提案された既存のデータセットでカバーされていない相補的な側面を捉えている。
論文 参考訳(メタデータ) (2024-02-22T03:46:02Z) - The Best Ends by the Best Means: Ethical Concerns in App Reviews [2.0625936401496237]
App Storeのレビューでは,ソフトウェア欠陥を特定する上で不可欠な,ユーザの視点の収集が可能になる。
ユーザレビュー500万件を収集し、ユーザの好みを表す倫理的懸念のセットを開発し、これらのレビューのサンプルを手作業でラベル付けしました。
検閲、個人情報盗難、安全に関する倫理的懸念を強く報告していることがわかりました。
論文 参考訳(メタデータ) (2024-01-19T23:53:26Z) - Unpacking the Ethical Value Alignment in Big Models [46.560886177083084]
本稿では,ビッグモデルに関連するリスクと課題の概要,既存のAI倫理ガイドラインを調査し,これらのモデルの限界から生じる倫理的影響について考察する。
本稿では,大規模モデルの倫理的価値を整合させる新しい概念パラダイムを導入し,アライメント基準,評価,方法に関する有望な研究方向性について議論する。
論文 参考訳(メタデータ) (2023-10-26T16:45:40Z) - Mining Reddit Data to Elicit Students' Requirements During COVID-19
Pandemic [2.5475486924467075]
本稿では,問題自体に関するフィードバックの収集に焦点をあてて,要件適用のシフトを提案する。
高等教育機関における新型コロナウイルスパンデミック時の学生要件に関するケーススタディを行った。
要求文を識別するために,複数の機械学習と自然言語処理技術を用いた。
論文 参考訳(メタデータ) (2023-07-26T14:26:16Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
本稿では、レビューに基づく項目推薦のための感性認識型インタラクティブフュージョンネットワーク(SIFN)を提案する。
まず、BERTを介してユーザ/イテムレビューをエンコードし、各レビューのセマンティックな特徴を抽出する軽量な感情学習者を提案する。
そこで我々は,感情学習者が明示的な感情ラベルを用いて感情認識特徴を抽出するための感情予測タスクを提案する。
論文 参考訳(メタデータ) (2021-08-18T08:04:38Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
私たちは倫理的考慮事項を(アジャイル)ソフトウェア開発プロセスに組み込む必要があると論じています。
私たちは、すでに存在しており、確立されたアジャイルソフトウェア開発プロセスで倫理的な議論を実施する可能性を強調しました。
論文 参考訳(メタデータ) (2021-07-15T11:14:03Z) - Emerging App Issue Identification via Online Joint Sentiment-Topic
Tracing [66.57888248681303]
本稿では,MERITという新しい問題検出手法を提案する。
AOBSTモデルに基づいて、1つのアプリバージョンに対するユーザレビューに否定的に反映されたトピックを推測する。
Google PlayやAppleのApp Storeで人気のアプリに対する実験は、MERITの有効性を実証している。
論文 参考訳(メタデータ) (2020-08-23T06:34:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。