論文の概要: Generative Language Model for Catalyst Discovery
- arxiv url: http://arxiv.org/abs/2407.14040v1
- Date: Fri, 19 Jul 2024 05:34:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:43:32.384389
- Title: Generative Language Model for Catalyst Discovery
- Title(参考訳): 触媒発見のための生成言語モデル
- Authors: Dong Hyeon Mok, Seoin Back,
- Abstract要約: 化学空間から無機触媒構造の文字列表現を生成するために訓練されたCatalyst Generative Pretrained Transformer (CatGPT)を導入する。
CatGPTは有効かつ正確な触媒構造を生成する上で高い性能を示すだけでなく、所望の触媒の種類を生成するための基礎モデルとしても機能する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovery of novel and promising materials is a critical challenge in the field of chemistry and material science, traditionally approached through methodologies ranging from trial-and-error to machine learning-driven inverse design. Recent studies suggest that transformer-based language models can be utilized as material generative models to expand chemical space and explore materials with desired properties. In this work, we introduce the Catalyst Generative Pretrained Transformer (CatGPT), trained to generate string representations of inorganic catalyst structures from a vast chemical space. CatGPT not only demonstrates high performance in generating valid and accurate catalyst structures but also serves as a foundation model for generating desired types of catalysts by fine-tuning with sparse and specified datasets. As an example, we fine-tuned the pretrained CatGPT using a binary alloy catalyst dataset designed for screening two-electron oxygen reduction reaction (2e-ORR) catalyst and generate catalyst structures specialized for 2e-ORR. Our work demonstrates the potential of language models as generative tools for catalyst discovery.
- Abstract(参考訳): 新規で有望な素材の発見は、化学と材料科学の分野において重要な課題であり、伝統的に試行錯誤から機械学習駆動の逆設計に至るまで、方法論を通してアプローチされてきた。
近年の研究では、トランスフォーマーに基づく言語モデルを材料生成モデルとして利用して、化学空間を拡大し、望ましい性質を持つ材料を探索できることが示唆されている。
本研究では, 無機触媒構造の文字列表現を広大な化学空間から生成するために訓練された触媒生成前処理トランス (CatGPT) を紹介する。
CatGPTは、有効かつ正確な触媒構造を生成する上で高い性能を示すだけでなく、スパースと特定のデータセットを微調整することで、所望の触媒の種類を生成する基盤モデルとしても機能する。
一例として, 2電子酸素還元反応 (2e-ORR) 触媒をスクリーニングする二元合金触媒データセットを用いて, プリトレーニングしたCatGPTを微調整し, 2e-ORRに特化した触媒構造を生成する。
本研究は,触媒発見のための生成ツールとしての言語モデルの可能性を示す。
関連論文リスト
- BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chemは150億のパラメータを持つ大規模な言語モデルであり、再合成予測の強化に最適化されている。
我々のモデルは幅広い化学知識を捉え、反応条件の正確な予測を可能にする。
この開発により、化学者は新しい化合物を十分に扱うことができ、医薬品製造と材料科学の革新サイクルを早める可能性がある。
論文 参考訳(メタデータ) (2024-08-19T05:17:40Z) - A Machine Learning and Explainable AI Framework Tailored for Unbalanced Experimental Catalyst Discovery [10.92613600218535]
各種成分の触媒収率を正確に分類するために,堅牢な機械学習と説明可能なAI(XAI)フレームワークを導入する。
このフレームワークは、触媒データの不足と不均衡を処理するために設計された一連のMLプラクティスを組み合わせる。
このような知見は, 新規触媒の開発・同定において, 優れた性能を有する化学者を支援することができると信じている。
論文 参考訳(メタデータ) (2024-07-10T13:09:53Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
低ランク計算としての効率的な数値学習と推論アルゴリズムはトランスフォーマーに基づく適応学習に優れた性能を持つことを示す。
我々は、等級モデルが適応性を改善しながら一般化にどのように影響するかを分析する。
適切なマグニチュードベースのテストは,テストパフォーマンスに多少依存している,と結論付けています。
論文 参考訳(メタデータ) (2024-06-24T23:00:58Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
本稿では,テンプレートのないグラフ・ツー・シーケンスパイプラインであるUAlignを紹介した。
グラフニューラルネットワークとトランスフォーマーを組み合わせることで、分子固有のグラフ構造をより効果的に活用することができる。
論文 参考訳(メタデータ) (2024-03-25T03:23:03Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
本研究は、分子設計の課題を条件付き生成モデリングタスクとしてフレーミングすることによって検討する。
本研究では,(1)学習可能な事前分布を持つ潜伏ベクトル,(2)プロンプトとして潜伏ベクトルを用いる因果トランスフォーマーに基づく分子生成モデル,(3)潜在プロンプトを用いた分子の目標特性および/または制約値を予測する特性予測モデルからなる新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-02-27T03:33:23Z) - Turning hazardous volatile matter compounds into fuel by catalytic steam
reforming: An evolutionary machine learning approach [2.1026063307327045]
本研究は,揮発性物質化合物の触媒水蒸気改質をモデル化し,理解し,最適化するための機械学習に基づく研究フレームワークを初めて開発したものである。
トルエン触媒水蒸気改質は, 化学・音場解析を用いて機械学習モデルの入力特性を得る方法を示すケーススタディとして用いられる。
論文 参考訳(メタデータ) (2023-07-25T16:29:07Z) - Catalysis distillation neural network for the few shot open catalyst
challenge [1.1878820609988694]
本稿では,機械学習の反応予測への応用を推し進めるコンペであるFew-Shot Open Catalyst Challenge 2023を紹介する。
触媒蒸留グラフニューラルネットワーク(CDGNN)というフレームワークを用いた機械学習手法を提案する。
その結果,CDGNNは触媒構造からの埋め込みを効果的に学習し,構造吸着関係の捕捉を可能にした。
論文 参考訳(メタデータ) (2023-05-31T04:23:56Z) - PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated
Catalyst Design [102.9593507372373]
触媒材料は産業プロセスに関わる電気化学反応において重要な役割を担っている。
機械学習は、大量のデータから材料特性を効率的にモデル化する可能性を秘めている。
本稿では,ほとんどのアーキテクチャに適用可能なタスク固有のイノベーションを提案し,計算効率と精度の両立を図っている。
論文 参考訳(メタデータ) (2022-11-22T05:24:30Z) - Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based
Single-Atom Alloy Catalysts for CO2 Reduction Reaction [61.9212585617803]
グラフニューラルネットワーク(GNN)は、材料科学者からますます注目を集めている。
本研究では,DimeNet++と混合密度ネットワークに基づくマルチタスク(MT)アーキテクチャを構築し,その性能向上を図る。
論文 参考訳(メタデータ) (2022-09-15T13:52:15Z) - Boosting Heterogeneous Catalyst Discovery by Structurally Constrained
Deep Learning Models [0.0]
グラフニューラルネットワーク(GNN)のようなディープラーニングアプローチは、新しい高性能触媒をモデル化するスコープを大幅に拡張する新たな機会を開く。
ここでは,Voronoiテッセルレーションにより改良したGNNの埋め込み改善について述べる。
データの適切な選択は、物理ベースで1原子あたり20 meV以上の値に誤差を減少させることができることを示す。
論文 参考訳(メタデータ) (2022-07-11T17:01:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。