論文の概要: Regularizing Dynamic Radiance Fields with Kinematic Fields
- arxiv url: http://arxiv.org/abs/2407.14059v1
- Date: Fri, 19 Jul 2024 06:37:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:33:40.789170
- Title: Regularizing Dynamic Radiance Fields with Kinematic Fields
- Title(参考訳): 運動場を用いた規則化動的放射場
- Authors: Woobin Im, Geonho Cha, Sebin Lee, Jumin Lee, Juhyeong Seon, Dongyoon Wee, Sung-Eui Yoon,
- Abstract要約: 我々はキネマティクスを動的放射場と統合し、モノクラービデオのスパースな性質と現実世界の物理のギャップを埋める。
本手法は運動場を導入し,運動量(速度,加速度,ジャーク)を計測する。
実験では,実世界のモノクロビデオにおいて,物理的な動きパターンをキャプチャすることで,最先端の技術を向上する。
- 参考スコア(独自算出の注目度): 18.772613721571894
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a novel approach for reconstructing dynamic radiance fields from monocular videos. We integrate kinematics with dynamic radiance fields, bridging the gap between the sparse nature of monocular videos and the real-world physics. Our method introduces the kinematic field, capturing motion through kinematic quantities: velocity, acceleration, and jerk. The kinematic field is jointly learned with the dynamic radiance field by minimizing the photometric loss without motion ground truth. We further augment our method with physics-driven regularizers grounded in kinematics. We propose physics-driven regularizers that ensure the physical validity of predicted kinematic quantities, including advective acceleration and jerk. Additionally, we control the motion trajectory based on rigidity equations formed with the predicted kinematic quantities. In experiments, our method outperforms the state-of-the-arts by capturing physical motion patterns within challenging real-world monocular videos.
- Abstract(参考訳): 本稿では,モノクロビデオから動的放射場を再構成する新しい手法を提案する。
我々はキネマティクスを動的放射場と統合し、モノクラービデオのスパースな性質と現実世界の物理のギャップを埋める。
本手法は運動場を導入し,運動量(速度,加速度,ジャーク)を計測する。
運動場は運動場真理を伴わずに測光損失を最小化することにより動的放射場と共に学習される。
さらに、キネマティクスを基礎とした物理駆動型正則化器により、我々の手法をさらに強化する。
本稿では, 物理駆動型正則化器を提案し, 予測運動量の物理的妥当性を保証し, 対流加速度やジャーク等について検討する。
さらに,予測運動量で形成される剛性方程式に基づいて運動軌跡を制御する。
実験では,実世界のモノクロビデオにおいて,物理的な動きパターンをキャプチャすることで,最先端の技術を向上する。
関連論文リスト
- Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos [6.093379844890164]
オンライン環境での運動学観測に物理モデルを選択的に組み込む新しい手法を提案する。
リカレントニューラルネットワークを導入し、キネマティックス入力とシミュレートされた動作を熱心にバランスするカルマンフィルタを実現する。
提案手法は,物理に基づく人間のポーズ推定作業に優れ,予測力学の物理的妥当性を示す。
論文 参考訳(メタデータ) (2024-10-10T10:24:59Z) - PhysPT: Physics-aware Pretrained Transformer for Estimating Human Dynamics from Monocular Videos [29.784542628690794]
本稿では、運動量に基づく運動推定を改善し、運動力を推定する物理対応事前学習変換器(PhysPT)を提案する。
PhysPTはTransformerエンコーダ/デコーダのバックボーンを利用して、自己管理的な方法で人間のダイナミクスを効果的に学習する。
論文 参考訳(メタデータ) (2024-04-05T22:07:25Z) - DyBluRF: Dynamic Neural Radiance Fields from Blurry Monocular Video [18.424138608823267]
動きのぼかしに影響を受ける単眼ビデオから鋭い新しいビューを合成する動的放射場アプローチであるDyBluRFを提案する。
入力画像中の動きのぼかしを考慮し、シーン内のカメラ軌跡とオブジェクト離散コサイン変換(DCT)トラジェクトリを同時にキャプチャする。
論文 参考訳(メタデータ) (2024-03-15T08:48:37Z) - Diffusion Priors for Dynamic View Synthesis from Monocular Videos [59.42406064983643]
ダイナミックノベルビュー合成は、ビデオ内の視覚的コンテンツの時間的進化を捉えることを目的としている。
まず、ビデオフレーム上に予め訓練されたRGB-D拡散モデルをカスタマイズ手法を用いて微調整する。
動的および静的なニューラルレイディアンス場を含む4次元表現に、微調整されたモデルから知識を蒸留する。
論文 参考訳(メタデータ) (2024-01-10T23:26:41Z) - OD-NeRF: Efficient Training of On-the-Fly Dynamic Neural Radiance Fields [63.04781030984006]
ダイナミック・ニューラル・レイディアンス・フィールド(ダイナミック・ニューラル・レイディアンス・フィールド)は、3次元ダイナミック・シーンにおける新しいビュー・シンセサイザーにおいて印象的な結果を示した。
本研究では,ダイナミックシーンのストリーミングが可能な動的NeRFを効率よく訓練・レンダリングするOD-NeRFを提案する。
本アルゴリズムは,6FPSトレーニングと合成動的シーンのレンダリングのインタラクティブな高速化を実現し,実世界の動的シーンの最先端と比較して,大幅なスピードアップを実現している。
論文 参考訳(メタデータ) (2023-05-24T07:36:47Z) - PAC-NeRF: Physics Augmented Continuum Neural Radiance Fields for
Geometry-Agnostic System Identification [64.61198351207752]
ビデオからのシステム同定(オブジェクトの物理的パラメータを推定する)への既存のアプローチは、既知のオブジェクトジオメトリを仮定する。
本研究では,オブジェクトの形状やトポロジを仮定することなく,多視点ビデオの集合から物理系を特徴付けるパラメータを同定することを目的とする。
マルチビュービデオから高ダイナミックな物体の未知の幾何学的パラメータと物理的パラメータを推定するために,Physics Augmented Continuum Neural Radiance Fields (PAC-NeRF)を提案する。
論文 参考訳(メタデータ) (2023-03-09T18:59:50Z) - Robust Dynamic Radiance Fields [79.43526586134163]
動的放射場再構成法は動的シーンの時間変化構造と外観をモデル化することを目的としている。
しかし、既存の手法では、正確なカメラポーズをStructure from Motion (SfM)アルゴリズムによって確実に推定できると仮定している。
カメラパラメータとともに静的および動的放射場を共同で推定することにより、このロバスト性問題に対処する。
論文 参考訳(メタデータ) (2023-01-05T18:59:51Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
本稿では,モノクラーRGBビデオ入力のみから動的シーンの3次元形状と物理パラメータを学習する手法を提案する。
実験により,提案手法は,競合するニューラルフィールドアプローチと比較して,動的シーンのメッシュとビデオの再構成に優れることを示した。
論文 参考訳(メタデータ) (2022-10-22T04:57:55Z) - Trajectory Optimization for Physics-Based Reconstruction of 3d Human
Pose from Monocular Video [31.96672354594643]
本研究は,単眼映像から身体的に可視な人間の動きを推定する作業に焦点をあてる。
物理を考慮しない既存のアプローチは、しばしば運動人工物と時間的に矛盾した出力を生み出す。
提案手法は,Human3.6Mベンチマークにおける既存の物理法と競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2022-05-24T18:02:49Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
既存のディープモデルは、ほぼ正確に見えるエラーを含むビデオから2Dと3Dキネマティックのポーズを予測する。
本稿では,最初の2次元と3次元のポーズ推定を入力として,映像系列から3次元の人間の動きを推定する物理に基づく手法を提案する。
論文 参考訳(メタデータ) (2020-07-22T21:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。