論文の概要: I Know About "Up"! Enhancing Spatial Reasoning in Visual Language Models Through 3D Reconstruction
- arxiv url: http://arxiv.org/abs/2407.14133v2
- Date: Thu, 12 Sep 2024 11:17:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 21:20:46.242386
- Title: I Know About "Up"! Enhancing Spatial Reasoning in Visual Language Models Through 3D Reconstruction
- Title(参考訳): 3次元再構成による視覚言語モデルにおける空間推論の強化
- Authors: Zaiqiao Meng, Hao Zhou, Yifang Chen,
- Abstract要約: ZeroVLMは、入力画像の異なるビューを取得するための3次元再構成モデルであるZero-1-to-3を使用している。
4つの視覚的空間推論データセットによる実験結果から, 最大19.48%の精度向上が得られた。
- 参考スコア(独自算出の注目度): 32.46674157164291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual Language Models (VLMs) are essential for various tasks, particularly visual reasoning tasks, due to their robust multi-modal information integration, visual reasoning capabilities, and contextual awareness. However, existing \VLMs{}' visual spatial reasoning capabilities are often inadequate, struggling even with basic tasks such as distinguishing left from right. To address this, we propose the \ours{} model, designed to enhance the visual spatial reasoning abilities of VLMS. ZeroVLM employs Zero-1-to-3, a 3D reconstruction model for obtaining different views of the input images and incorporates a prompting mechanism to further improve visual spatial reasoning. Experimental results on four visual spatial reasoning datasets show that our \ours{} achieves up to 19.48% accuracy improvement, which indicates the effectiveness of the 3D reconstruction and prompting mechanisms of our ZeroVLM.
- Abstract(参考訳): 視覚言語モデル(VLM)は、堅牢なマルチモーダル情報統合、視覚的推論機能、文脈認識など、様々なタスク、特に視覚的推論タスクに必須である。
しかしながら、既存の「VLMs{}」の視覚的空間推論能力はしばしば不十分であり、左と右を区別するといった基本的なタスクでも苦労している。
そこで本研究では,VLMSの空間的推論能力を高めるために,このモデルを提案する。
ZeroVLMは、入力画像の異なるビューを取得するための3次元再構成モデルであるZero-1-to-3を採用し、視覚空間推論をさらに改善するためのプロンプト機構を組み込んでいる。
4つの空間的推論データセットによる実験結果から,最大19.48%の精度向上が達成され,ZeroVLMの3次元再構成の有効性と促進機構が示された。
関連論文リスト
- Unlocking Textual and Visual Wisdom: Open-Vocabulary 3D Object Detection Enhanced by Comprehensive Guidance from Text and Image [70.02187124865627]
Open-vocabulary 3D object detection (OV-3DDet) は、新しい3Dシーン内において、目に見えないものの両方をローカライズし、認識することを目的としている。
視覚基盤モデルを利用して、3Dシーンにおける新しいクラスを発見するための画像的ガイダンスを提供する。
オープン語彙の3Dオブジェクト検出における基礎モデルの可能性を明らかにするとともに,精度と一般化の大幅な向上を示す。
論文 参考訳(メタデータ) (2024-07-07T04:50:04Z) - Learning to Localize Objects Improves Spatial Reasoning in Visual-LLMs [38.02017186215372]
大きな言語モデル(LLM)を視覚領域タスクに統合し、視覚的なLLM(V-LLM)を実現することにより、視覚言語タスクにおける例外的なパフォーマンスを実現している。
しかし、既存のV-LLMは空間的推論と局所化認識が弱い。
画像空間座標に基づく微調整目標が空間認識をV-LLMに注入する方法について検討する。
論文 参考訳(メタデータ) (2024-04-11T03:09:34Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
ロボット工学のための新しい3D事前学習フレームワークSUGARを紹介した。
SUGARは3次元の点雲を通してオブジェクトの意味的、幾何学的、および余分な特性をキャプチャする。
SuGARの3D表現は最先端の2Dおよび3D表現よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-01T21:23:03Z) - Volumetric Environment Representation for Vision-Language Navigation [66.04379819772764]
視覚言語ナビゲーション(VLN)は、視覚的な観察と自然言語の指示に基づいて、エージェントが3D環境をナビゲートする必要がある。
本研究では,物理世界を3次元構造細胞にボクセル化するボリューム環境表現(VER)を提案する。
VERは3D占有率、3D部屋レイアウト、および3Dバウンディングボックスを共同で予測する。
論文 参考訳(メタデータ) (2024-03-21T06:14:46Z) - SpatialPIN: Enhancing Spatial Reasoning Capabilities of Vision-Language Models through Prompting and Interacting 3D Priors [42.85605789984155]
空間的視覚的質問応答(VQA)において、最先端の空間的推論強化VLMを訓練する
本研究では,VLMの空間的推論能力を高めるためのフレームワークであるSpatialPINを提案する。
我々の空間推論型VLMは、空間的VQAの様々な形態でうまく機能し、ピックやスタック、軌道計画といった下流ロボット作業に役立てることができる。
論文 参考訳(メタデータ) (2024-03-18T17:38:29Z) - Scene-LLM: Extending Language Model for 3D Visual Understanding and Reasoning [24.162598399141785]
Scene-LLMは3次元視覚言語モデルであり、インタラクティブな3次元屋内環境におけるエンボディエージェントの能力を高める。
Scene-LLMを用いた実験は, 密接なキャプション, 質問応答, 対話型プランニングにおいて, 強力な機能を示す。
論文 参考訳(メタデータ) (2024-03-18T01:18:48Z) - GeoVLN: Learning Geometry-Enhanced Visual Representation with Slot
Attention for Vision-and-Language Navigation [52.65506307440127]
我々は,ロバストなビジュアル・アンド・ランゲージナビゲーションのためのスロットアテンションに基づく幾何学的視覚表現を学習するGeoVLNを提案する。
我々はV&L BERTを用いて言語情報と視覚情報の両方を組み込んだクロスモーダル表現を学習する。
論文 参考訳(メタデータ) (2023-05-26T17:15:22Z) - 3D Neural Scene Representations for Visuomotor Control [78.79583457239836]
我々は2次元視覚観測から動的3次元シーンのモデルを純粋に学習する。
学習した表現空間上に構築された動的モデルにより,操作課題に対するビジュモータ制御が可能となる。
論文 参考訳(メタデータ) (2021-07-08T17:49:37Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
3次元視覚的グラウンドリング問題に対する空間言語モデルを構築した。
本稿では,ReferIt3Dが提案する視覚言語データセットに対して,本モデルが競合的に動作することを示す。
論文 参考訳(メタデータ) (2021-07-07T18:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。