論文の概要: LayoutVLM: Differentiable Optimization of 3D Layout via Vision-Language Models
- arxiv url: http://arxiv.org/abs/2412.02193v3
- Date: Tue, 11 Mar 2025 05:58:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 13:59:51.71473
- Title: LayoutVLM: Differentiable Optimization of 3D Layout via Vision-Language Models
- Title(参考訳): LayoutVLM:視覚言語モデルによる3次元レイアウトの微分最適化
- Authors: Fan-Yun Sun, Weiyu Liu, Siyi Gu, Dylan Lim, Goutam Bhat, Federico Tombari, Manling Li, Nick Haber, Jiajun Wu,
- Abstract要約: 空間的推論は人間の認知の基本的側面であり、三次元空間における物体の直感的な理解と操作を可能にする。
視覚言語モデル(VLM)のセマンティック知識を活用するフレームワークおよびシーンレイアウト表現であるLayoutVLMを紹介する。
本稿では,既存のシーンデータセットから抽出したシーンレイアウト表現を用いた微調整VLMによる推論性能の向上を実証する。
- 参考スコア(独自算出の注目度): 57.92316645992816
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spatial reasoning is a fundamental aspect of human cognition, enabling intuitive understanding and manipulation of objects in three-dimensional space. While foundation models demonstrate remarkable performance on some benchmarks, they still struggle with 3D reasoning tasks like arranging objects in space according to open-ended language instructions, particularly in dense and physically constrained environments. We introduce LayoutVLM, a framework and scene layout representation that exploits the semantic knowledge of Vision-Language Models (VLMs) and supports differentiable optimization to ensure physical plausibility. LayoutVLM employs VLMs to generate two mutually reinforcing representations from visually marked images, and a self-consistent decoding process to improve VLMs spatial planning. Our experiments show that LayoutVLM addresses the limitations of existing LLM and constraint-based approaches, producing physically plausible 3D layouts better aligned with the semantic intent of input language instructions. We also demonstrate that fine-tuning VLMs with the proposed scene layout representation extracted from existing scene datasets can improve their reasoning performance.
- Abstract(参考訳): 空間的推論は人間の認知の基本的側面であり、三次元空間における物体の直感的な理解と操作を可能にする。
基礎モデルはいくつかのベンチマークで顕著なパフォーマンスを示していますが、特に密集した物理的制約のある環境では、オープンな言語命令に従ってオブジェクトを宇宙に配置するといった3D推論タスクに苦戦しています。
本稿では,視覚言語モデル(VLM)のセマンティックな知識を活用し,物理的妥当性を確保するために,微分可能な最適化をサポートするフレームワークおよびシーンレイアウト表現であるLayoutVLMを紹介する。
LayoutVLMは、視覚的にマークされた画像から2つの相互強化表現を生成するためにVLMを使用し、VLMの空間計画を改善するための自己整合デコーディングプロセスである。
実験の結果,LayoutVLMは既存のLLMと制約に基づくアプローチの限界に対処し,入力言語命令のセマンティックな意図に整合した物理的に妥当な3Dレイアウトを生成することがわかった。
また,既存のシーンデータセットから抽出したシーンレイアウト表現を用いた微調整VLMにより,推論性能が向上することを示す。
関連論文リスト
- Vision language models are unreliable at trivial spatial cognition [0.2902243522110345]
視覚言語モデル(VLM)は、画像から関連する視覚空間情報を抽出するように設計されている。
そこで我々は,テーブル上に配置されたオブジェクトの3Dシーンを画像で表現したベンチマークデータセットであるTableTestを開発し,それを最先端のVLMの評価に使用した。
結果は、同等の記述を使用するプロンプトの小さなバリエーションによって、パフォーマンスが劣化する可能性があることを示している。
論文 参考訳(メタデータ) (2025-04-22T17:38:01Z) - Empowering Large Language Models with 3D Situation Awareness [84.12071023036636]
3Dと2Dの主な違いは、3Dシーンにおける自我中心のオブザーバーの状況が変化し、異なる記述をもたらすことである。
本研究では,データ収集時の走査軌道を利用して状況認識データセットを自動的に生成する手法を提案する。
本研究では,観測者の視点の位置と方向を明示的に予測する状況接地モジュールを導入し,LLMが3次元シーンで状況記述をグラウンド化できるようにする。
論文 参考訳(メタデータ) (2025-03-29T09:34:16Z) - MetaSpatial: Reinforcing 3D Spatial Reasoning in VLMs for the Metaverse [5.745502268935752]
視覚言語モデル(VLM)における3次元空間推論の強化を目的とした,最初の強化学習ベースのフレームワークであるMetaSpatialを提案する。
我々のキーとなる革新はマルチターン RL ベースの最適化機構で、物理認識の制約とレンダリングされた画像評価を統合し、生成した3Dレイアウトが整合的で、物理的に妥当で、審美的に整合していることを保証する。
論文 参考訳(メタデータ) (2025-03-24T09:18:01Z) - MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation [87.30919771444117]
推論セグメンテーション(Reasoning segmentation)は、人間の意図と空間的推論に基づく複雑なシーンにおける対象オブジェクトのセグメンテーションを目的としている。
最近のマルチモーダル大言語モデル(MLLM)は印象的な2次元画像推論セグメンテーションを実証している。
本稿では,2次元MLLMから3次元シーン理解へ知識を伝達するフレームワークであるMLLM-For3Dを紹介する。
論文 参考訳(メタデータ) (2025-03-23T16:40:20Z) - iVISPAR -- An Interactive Visual-Spatial Reasoning Benchmark for VLMs [4.381263829108405]
VLM(Vision-Language Models)は、空間的推論と視覚的アライメントに苦しむことで知られている。
エージェントとして機能するVLMの空間的推論能力を評価するために設計された,インタラクティブなマルチモーダルベンチマークであるiVISPARを紹介する。
論文 参考訳(メタデータ) (2025-02-05T14:29:01Z) - AlignVLM: Bridging Vision and Language Latent Spaces for Multimodal Understanding [63.09928907734156]
AlignVLMは視覚的特徴をテキスト埋め込みの重み付き平均値にマッピングする視覚テキストアライメント手法である。
実験の結果,AlignVLMは先行アライメント法と比較して最先端の性能を実現していることがわかった。
論文 参考訳(メタデータ) (2025-02-03T13:34:51Z) - g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks [62.74304008688472]
Generalizable 3D-Language Feature Fields (g3D-LF)は、大規模な3D言語データセットで事前訓練された3D表現モデルである。
論文 参考訳(メタデータ) (2024-11-26T01:54:52Z) - EditRoom: LLM-parameterized Graph Diffusion for Composable 3D Room Layout Editing [114.14164860467227]
自然言語コマンドで様々なレイアウト編集を実行できるフレームワークであるEdit-Roomを提案する。
特にEditRoomは、コマンドプランニングとターゲットシーンの生成にLarge Language Models(LLM)を利用している。
既存の3Dシーンデータセットを拡張する自動パイプラインを開発し,83kの編集ペアを備えた大規模データセットであるEditRoom-DBを導入した。
論文 参考訳(メタデータ) (2024-10-03T17:42:24Z) - REVISION: Rendering Tools Enable Spatial Fidelity in Vision-Language Models [67.55362046790512]
視覚言語モデルには、空間的関係を正しく推論する能力がない。
視覚言語モデルにおける空間忠実度を改善するREVISIONフレームワークを開発した。
本研究の結果から,レンダリングベースのフレームワークは空間認識モデルの開発に有効な手法であることが示唆された。
論文 参考訳(メタデータ) (2024-08-05T04:51:46Z) - LLplace: The 3D Indoor Scene Layout Generation and Editing via Large Language Model [58.24851949945434]
LLplace は軽量な微調整のオープンソース LLM Llama3 に基づく新しい3D屋内シーンレイアウトデザイナである。
LLplaceは、空間的関係の先行とコンテキスト内例の必要性を回避し、効率的で信頼性の高い部屋レイアウト生成を可能にする。
提案手法は,高品質な3D設計ソリューションを実現する上で,LLplaceがインタラクティブに3D屋内レイアウトを効果的に生成・編集できることを示す。
論文 参考訳(メタデータ) (2024-06-06T08:53:01Z) - Scene-LLM: Extending Language Model for 3D Visual Understanding and Reasoning [24.162598399141785]
Scene-LLMは3次元視覚言語モデルであり、インタラクティブな3次元屋内環境におけるエンボディエージェントの能力を高める。
Scene-LLMを用いた実験は, 密接なキャプション, 質問応答, 対話型プランニングにおいて, 強力な機能を示す。
論文 参考訳(メタデータ) (2024-03-18T01:18:48Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
視覚条件付き言語モデル(VLM)は、視覚対話、シーン理解、ロボットタスク計画などのアプリケーションに採用されている。
新しいリリースの量は多いが、イメージ前処理、アーキテクチャ、最適化に関する重要な設計決定は未調査である。
論文 参考訳(メタデータ) (2024-02-12T18:21:14Z) - Towards Language-guided Interactive 3D Generation: LLMs as Layout
Interpreter with Generative Feedback [20.151147653552155]
大きな言語モデル(LLM)は、印象的な推論、会話、ゼロショット生成能力を示している。
本稿では,LLMを3次元レイアウトインタプリタとして統合した言語誘導型対話型3D生成システムLI3Dを提案する。
また,大規模言語と視覚アシスタントのLLaVAを導入し,視覚的側面から生成的なフィードバックを提供することにより,生成したコンテンツの視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-05-25T07:43:39Z) - LayoutGPT: Compositional Visual Planning and Generation with Large
Language Models [98.81962282674151]
大規模言語モデル(LLM)は、テキスト条件からレイアウトを生成することで視覚的なプランナーとして機能する。
本稿では,スタイルシート言語におけるコンテキスト内視覚的デモンストレーションを構成する手法であるLayoutGPTを提案する。
論文 参考訳(メタデータ) (2023-05-24T17:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。