Role of Quantum Coherence in Kinetic Uncertainty Relations
- URL: http://arxiv.org/abs/2407.14147v1
- Date: Fri, 19 Jul 2024 09:26:16 GMT
- Title: Role of Quantum Coherence in Kinetic Uncertainty Relations
- Authors: Kacper Prech, Patrick P. Potts, Gabriel T. Landi,
- Abstract summary: Kinetic Uncertainty Relation (KUR) bounds the signal-to-noise ratio of currents in terms of the number of transitions per unit time.
The precise connection between KUR violations and quantum coherence has so far remained elusive.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Kinetic Uncertainty Relation (KUR) bounds the signal-to-noise ratio of stochastic currents in terms of the number of transitions per unit time, known as the dynamical activity. This bound was derived in a classical context, and can be violated in the quantum regime due to coherent effects. However, the precise connection between KUR violations and quantum coherence has so far remained elusive, despite significant investigation. In this work, we solve this problem by deriving a modified bound that exactly pinpoints how, and when, coherence might lead to KUR violations. Our bound is sensitive to the specific kind of unraveling of the quantum master equation. It therefore allows one to compare quantum jumps and quantum diffusion, and understand, in each case, how quantum coherence affects fluctuations. We illustrate our result on a double quantum dot, where the electron current is monitored either by electron jump detection or with continuous diffusive charge measurement.
Related papers
- Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Robustness of quantum correlation in quantum energy teleportation [0.0]
We present the evolution of quantum correlation in the quantum energy teleportation (QET) protocol using quantum discord.
In the QET protocol, where local observations and conditional operations are repeated, quantum correlations become nontrivial because of the statistical creation of mixed states.
arXiv Detail & Related papers (2024-02-01T10:35:09Z) - The effects of detuning on entropic uncertainty bound and quantum
correlations in dissipative environment [0.0]
We will use the entropic uncertainty relation in the presence of quantum memory.
The effects of the detuning between the transition frequency of a quantum memory and the center frequency of a cavity on entrpic uncertainty bound and quantum correlation between quantum memory and measured particle will be studied.
arXiv Detail & Related papers (2024-01-18T08:04:53Z) - Enhancing exotic quantum fluctuations in a strongly entangled cavity BEC
system [0.0]
We show that the strong coupling of a quantum light field and correlated quantum matter induces exotic quantum fluctuations in the matter sector.
We derive the dissipative Landau and Beliaev processes from the microscopic Hamiltonian using imaginary time path integrals.
arXiv Detail & Related papers (2023-11-28T10:58:14Z) - Adherence and violation of the equivalence principle from classical to
quantum mechanics [0.0]
An inhomogeneous gravitational field tidal effects couple the center of mass motion to the quantum fluctuations.
The size of this violation is within sensitivities of current Eotvos and clock-based return time experiments.
arXiv Detail & Related papers (2023-10-13T16:12:31Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum bounds and fluctuation-dissipation relations [0.0]
We discuss the quantum fluctuation-dissipation theorem (the KMS conditions) as the principle underlying bounds on correlation time scales.
By restating the problem in a replicated space, we show that the quantum bound to chaos is a direct consequence of the KMS condition.
We describe how quantum fluctuation-dissipation relations act in general as a blurring of the time-dependence of correlations, which can imply bounds on their decay rates.
arXiv Detail & Related papers (2021-10-07T14:34:41Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.