ESP-MedSAM: Efficient Self-Prompting SAM for Universal Domain-Generalized Medical Image Segmentation
- URL: http://arxiv.org/abs/2407.14153v4
- Date: Sun, 18 Aug 2024 01:28:06 GMT
- Title: ESP-MedSAM: Efficient Self-Prompting SAM for Universal Domain-Generalized Medical Image Segmentation
- Authors: Qing Xu, Jiaxuan Li, Xiangjian He, Ziyu Liu, Zhen Chen, Wenting Duan, Chenxin Li, Maggie M. He, Fiseha B. Tesema, Wooi P. Cheah, Yi Wang, Rong Qu, Jonathan M. Garibaldi,
- Abstract summary: Segment Anything Model (SAM) has demonstrated its potential in both settings.
We propose an efficient self-prompting SAM for universal domain-generalized medical image segmentation, named ESP-MedSAM.
ESP-MedSAM outperforms state-of-the-arts in diverse medical imaging segmentation tasks.
- Score: 18.388979166848962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The universality of deep neural networks across different modalities and their generalization capabilities to unseen domains play an essential role in medical image segmentation. The recent Segment Anything Model (SAM) has demonstrated its potential in both settings. However, the huge computational costs, demand for manual annotations as prompts and conflict-prone decoding process of SAM degrade its generalizability and applicability in clinical scenarios. To address these issues, we propose an efficient self-prompting SAM for universal domain-generalized medical image segmentation, named ESP-MedSAM. Specifically, we first devise the Multi-Modal Decoupled Knowledge Distillation (MMDKD) strategy to construct a lightweight semi-parameter sharing image encoder that produces discriminative visual features for diverse modalities. Further, we introduce the Self-Patch Prompt Generator (SPPG) to automatically generate high-quality dense prompt embeddings for guiding segmentation decoding. Finally, we design the Query-Decoupled Modality Decoder (QDMD) that leverages a one-to-one strategy to provide an independent decoding channel for every modality. Extensive experiments indicate that ESP-MedSAM outperforms state-of-the-arts in diverse medical imaging segmentation tasks, displaying superior modality universality and generalization capabilities. Especially, ESP-MedSAM uses only 4.5\% parameters compared to SAM-H. The source code is available at https://github.com/xq141839/ESP-MedSAM.
Related papers
- DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
We propose a dual-branch adapted SAM framework, named DB-SAM, to bridge the gap between natural and 2D/3D medical data.
Our proposed DB-SAM achieves an absolute gain of 8.8%, compared to a recent medical SAM adapter in the literature.
arXiv Detail & Related papers (2024-10-05T14:36:43Z) - CC-SAM: SAM with Cross-feature Attention and Context for Ultrasound Image Segmentation [20.448864959103858]
The Segment Anything Model (SAM) has achieved remarkable successes in the realm of natural image segmentation.
SAM struggles with medical images that feature low contrast, faint boundaries, intricate morphologies, and small-sized objects.
We introduce a comprehensive modification to enhance SAM's performance in the medical domain.
arXiv Detail & Related papers (2024-07-31T22:24:05Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding [15.401507589312702]
This paper introduces H-SAM, a prompt-free adaptation of the Segment Anything Model (SAM) for efficient fine-tuning of medical images.
In the initial stage, H-SAM employs SAM's original decoder to generate a prior probabilistic mask, guiding a more intricate decoding process.
Our H-SAM demonstrates a 4.78% improvement in average Dice compared to existing prompt-free SAM variants.
arXiv Detail & Related papers (2024-03-27T05:55:16Z) - SAMCT: Segment Any CT Allowing Labor-Free Task-Indicator Prompts [28.171383990186904]
We construct a large CT dataset consisting of 1.1M CT images and 5M masks from public datasets.
We propose a powerful foundation model SAMCT allowing labor-free prompts.
Based on SAM, SAMCT is further equipped with a CNN image encoder, a cross-branch interaction module, and a task-indicator prompt encoder.
arXiv Detail & Related papers (2024-03-20T02:39:15Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
We present WSI-SAM, enhancing Segment Anything Model (SAM) with precise object segmentation capabilities for histopathology images.
To fully exploit pretrained knowledge while minimizing training overhead, we keep SAM frozen, introducing only minimal extra parameters.
Our model outperforms SAM by 4.1 and 2.5 percent points on a ductal carcinoma in situ (DCIS) segmentation tasks and breast cancer metastasis segmentation task.
arXiv Detail & Related papers (2024-03-14T10:30:43Z) - UN-SAM: Universal Prompt-Free Segmentation for Generalized Nuclei Images [47.59627416801523]
In digital pathology, precise nuclei segmentation is pivotal yet challenged by the diversity of tissue types, staining protocols, and imaging conditions.
We propose the Universal prompt-free SAM framework for Nuclei segmentation (UN-SAM)
UN-SAM with exceptional performance surpasses state-of-the-arts in nuclei instance and semantic segmentation, especially the generalization capability in zero-shot scenarios.
arXiv Detail & Related papers (2024-02-26T15:35:18Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
In this work, we replace Segment Anything Model with an encoder that operates on the same input image.
We obtain state-of-the-art results on multiple medical images and video benchmarks.
For inspecting the knowledge within it, and providing a lightweight segmentation solution, we also learn to decode it into a mask by a shallow deconvolution network.
arXiv Detail & Related papers (2023-06-10T07:27:00Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.