Optimized surface ion trap design for tight confinement and separation of ion chains
- URL: http://arxiv.org/abs/2407.14195v1
- Date: Fri, 19 Jul 2024 10:45:56 GMT
- Title: Optimized surface ion trap design for tight confinement and separation of ion chains
- Authors: Ilya Gerasin, Nikita Zhadnov, Konstantin Kudeyarov, Ksienia Khabarova, Nikolay Kolachevsky, Ilya Semerikov,
- Abstract summary: Qubit systems based on trapped ultracold ions win one of the leading positions in the quantum computing field.
Surface Paul traps for ion confinement open the opportunity to scale quantum processors to hundreds of qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Qubit systems based on trapped ultracold ions win one of the leading positions in the quantum computing field, demonstrating quantum algorithms with the highest complexity to date. Surface Paul traps for ion confinement open the opportunity to scale quantum processors to hundreds of qubits and enable high-connectivity manipulations on ions. To fabricate such a system with certain characteristics, the special design of a surface electrode structure is required. The depth of the trapping potential, the stability parameter, the secular frequency and the distance between an ion and the trap surface should be optimized for better performance. Here we present the optimized design of a relatively simple surface trap that allows several important high-fidelity primitives: tight ion confinement, laser cooling, and wide optical access. The suggested trap design also allows to perform an important basic operation, namely, splitting an ion chain into two parts.
Related papers
- Scalable architecture for trapped-ion quantum computing using RF traps and dynamic optical potentials [0.0]
In principle there is no fundamental limit to the number of ion-based qubits that can be confined in a single 1D register.
Here we propose a holistic, scalable architecture for quantum computing with large ion-crystals.
We show that these cells behave as nearly independent quantum registers, allowing for parallel entangling gates on all cells.
arXiv Detail & Related papers (2023-11-02T12:06:49Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Trapped Ions as an Architecture for Quantum Computing [110.83289076967895]
We describe one of the most promising platforms for the construction of a universal quantum computer.
We discuss from the physics involved in trapping ions in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates.
arXiv Detail & Related papers (2022-07-23T22:58:50Z) - Optimization and implementation of a surface-electrode ion trap junction [6.285167805465505]
We describe the design of a surface-electrode ion trap junction, which is a key element for large-scale ion trap arrays.
A bi-objective optimization method is used for designing the electrodes, which maintains the total pseudo-potential curvature.
integrated optical addressing contributes to modular trapped-ion quantum computing in interconnected 2-dimensional arrays.
arXiv Detail & Related papers (2022-01-29T12:47:39Z) - Near-Surface Electrical Characterisation of Silicon Electronic Devices
Using Focused keV Ions [45.82374977939355]
We show how to implant low-energy ions into silicon devices featuring an enlarged 60x60 $mu$m sensitive area.
Despite the weak internal electric field, near-unity charge collection efficiency is obtained from the entire sensitive area.
This can be explained by the critical role that the high-quality thermal gate oxide plays in the ion detection response.
arXiv Detail & Related papers (2022-01-27T06:29:46Z) - A scalable helium gas cooling system for trapped-ion applications [51.715517570634994]
A modular cooling system is presented for use with multiple ion-trapping experiments simultaneously.
The cooling system is expected to deliver a net cooling power of 111 W at 70 K to up to four experiments.
arXiv Detail & Related papers (2021-06-14T16:37:54Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Minimization of ion micromotion with artificial neural network [8.729142722225598]
Minimizing the micromotion of the single trapped ion in a linear Paul trap is a tedious and time-consuming work.
Here we demonstrate that systematic machine learning based on artificial neural networks can quickly and efficiently find optimal voltage settings for the electrodes.
Our approach achieves a very high level of control for the ion micromotion, and can be extended to other configurations of Paul trap.
arXiv Detail & Related papers (2021-03-03T07:50:19Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z) - A two-dimensional architecture for fast large-scale trapped-ion quantum
computing [0.0]
We propose an architecture for large-scale quantum computing with a two-dimensional array of atomic ions trapped at such large distance.
Using gate operations far outside of the Lamb-Dicke region, we show that fast and robust entangling gates can be realized in any large ion arrays.
arXiv Detail & Related papers (2020-04-24T09:17:40Z) - Integrated optical multi-ion quantum logic [4.771545115836015]
Planar-fabricated optics integrated within ion trap devices can make such systems simultaneously more robust and parallelizable.
We use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates.
Similar devices may also find applications in neutral atom and ion-based quantum-sensing and timekeeping.
arXiv Detail & Related papers (2020-02-06T13:52:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.