Minimization of ion micromotion with artificial neural network
- URL: http://arxiv.org/abs/2103.02231v3
- Date: Fri, 5 Mar 2021 08:22:10 GMT
- Title: Minimization of ion micromotion with artificial neural network
- Authors: Yang Liu, Qi-feng Lao, Peng-fei Lu, Xin-xin Rao, Hao Wu, Teng Liu,
Kun-xu Wang, Zhao Wang, Ming-shen Li, Feng Zhu, and Le Luo
- Abstract summary: Minimizing the micromotion of the single trapped ion in a linear Paul trap is a tedious and time-consuming work.
Here we demonstrate that systematic machine learning based on artificial neural networks can quickly and efficiently find optimal voltage settings for the electrodes.
Our approach achieves a very high level of control for the ion micromotion, and can be extended to other configurations of Paul trap.
- Score: 8.729142722225598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Minimizing the micromotion of the single trapped ion in a linear Paul trap is
a tedious and time-consuming work,but is of great importance in cooling the ion
into the motional ground state as well as maintaining long coherence time,
which is crucial for quantum information processing and quantum computation.
Here we demonstrate that systematic machine learning based on artificial neural
networks can quickly and efficiently find optimal voltage settings for the
electrodes using rf-photon correlation technique, consequently minimizing the
micromotion to the minimum. Our approach achieves a very high level of control
for the ion micromotion, and can be extended to other configurations of Paul
trap.
Related papers
- Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope [44.99833362998488]
The electric control of quantum spin chains has been an outstanding goal for the few last years due to its potential use in technologies related to quantum information processing.
We show the feasibility of the different steps necessary to perform controlled quantum state transfer in a $S=1/2$ titanium atoms chain employing the electric field produced by a Scanning Tunneling Microscope (STM)
arXiv Detail & Related papers (2024-08-13T14:45:46Z) - Optimized surface ion trap design for tight confinement and separation of ion chains [0.0]
Qubit systems based on trapped ultracold ions win one of the leading positions in the quantum computing field.
Surface Paul traps for ion confinement open the opportunity to scale quantum processors to hundreds of qubits.
arXiv Detail & Related papers (2024-07-19T10:45:56Z) - Scalable architecture for trapped-ion quantum computing using RF traps and dynamic optical potentials [0.0]
In principle there is no fundamental limit to the number of ion-based qubits that can be confined in a single 1D register.
Here we propose a holistic, scalable architecture for quantum computing with large ion-crystals.
We show that these cells behave as nearly independent quantum registers, allowing for parallel entangling gates on all cells.
arXiv Detail & Related papers (2023-11-02T12:06:49Z) - The Effect of Micromotion and Local Stress in Quantum simulation with
Trapped Ions in Optical Tweezers [0.0]
We study the robustness of our findings in the presence of micromotion, local stress, and intensity noise.
We conclude that optical tweezers are a useful method for controlling interactions in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-02-28T11:01:30Z) - Near-Surface Electrical Characterisation of Silicon Electronic Devices
Using Focused keV Ions [45.82374977939355]
We show how to implant low-energy ions into silicon devices featuring an enlarged 60x60 $mu$m sensitive area.
Despite the weak internal electric field, near-unity charge collection efficiency is obtained from the entire sensitive area.
This can be explained by the critical role that the high-quality thermal gate oxide plays in the ion detection response.
arXiv Detail & Related papers (2022-01-27T06:29:46Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Trapped Ion Quantum Computing using Optical Tweezers and Electric Fields [0.0]
We propose a new architecture for trapped ion quantum computing that combines optical tweezers delivering qubit state-dependent local potentials with oscillating electric fields.
Since the electric field allows for long-range qubit-qubit interactions mediated by the center-of-mass motion of the ion crystal alone, it is inherently scalable to large ion crystals.
arXiv Detail & Related papers (2021-06-14T15:16:16Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Integrated optical multi-ion quantum logic [4.771545115836015]
Planar-fabricated optics integrated within ion trap devices can make such systems simultaneously more robust and parallelizable.
We use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates.
Similar devices may also find applications in neutral atom and ion-based quantum-sensing and timekeeping.
arXiv Detail & Related papers (2020-02-06T13:52:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.