論文の概要: Enhanced Mortality Prediction in ICU Stroke Patients via Deep Learning
- arxiv url: http://arxiv.org/abs/2407.14211v1
- Date: Fri, 19 Jul 2024 11:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:54:18.898840
- Title: Enhanced Mortality Prediction in ICU Stroke Patients via Deep Learning
- Title(参考訳): 深層学習によるICU脳卒中患者の死亡予測
- Authors: Armin Abdollahi, Xinghong Ma, Jiahao Zhang, Daijia Wu, Tongshou Wu, Zizheng Ye, Maryam Pishgar,
- Abstract要約: ストロークは成人の障害と死亡の第二の要因である。
毎年1700万人が脳卒中を患っており、約85%が虚血性脳卒中である。
我々は、死亡リスクを評価するためのディープラーニングモデルを開発し、比較のためにいくつかのベースライン機械学習モデルを実装した。
- 参考スコア(独自算出の注目度): 3.010207342286786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Stroke is second-leading cause of disability and death among adults. Approximately 17 million people suffer from a stroke annually, with about 85% being ischemic strokes. Predicting mortality of ischemic stroke patients in intensive care unit (ICU) is crucial for optimizing treatment strategies, allocating resources, and improving survival rates. Methods: We acquired data on ICU ischemic stroke patients from MIMIC-IV database, including diagnoses, vital signs, laboratory tests, medications, procedures, treatments, and clinical notes. Stroke patients were randomly divided into training (70%, n=2441), test (15%, n=523), and validation (15%, n=523) sets. To address data imbalances, we applied Synthetic Minority Over-sampling Technique (SMOTE). We selected 30 features for model development, significantly reducing feature number from 1095 used in the best study. We developed a deep learning model to assess mortality risk and implemented several baseline machine learning models for comparison. Results: XGB-DL model, combining XGBoost for feature selection and deep learning, effectively minimized false positives. Model AUROC improved from 0.865 (95% CI: 0.821 - 0.905) on first day to 0.903 (95% CI: 0.868 - 0.936) by fourth day using data from 3,646 ICU mortality patients in the MIMIC-IV database with 0.945 AUROC (95% CI: 0.944 - 0.947) during training. Although other ML models also performed well in terms of AUROC, we chose Deep Learning for its higher specificity. Conclusions: Through enhanced feature selection and data cleaning, proposed model demonstrates a 13% AUROC improvement compared to existing models while reducing feature number from 1095 in previous studies to 30.
- Abstract(参考訳): 背景:ストロークは成人の障害と死亡の第二の要因である。
毎年1700万人が脳卒中を患っており、約85%が虚血性脳卒中である。
集中治療室(ICU)における虚血性脳卒中患者の死亡予測は、治療戦略の最適化、資源配分、生存率の向上に不可欠である。
方法:MIMIC-IVデータベースからICU虚血性脳卒中患者の診断,バイタルサイン,臨床検査,治療,治療,臨床ノートなどのデータを得た。
ストローク患者は無作為にトレーニング (70%, n=2441), テスト (15%, n=523), 検証 (15%, n=523) に分けた。
データ不均衡に対処するために、SMOTE(Synthetic Minority Over-Sampling Technique)を適用した。
モデル開発のために30の特徴を選定し,最も優れた研究で使用される1095から特徴数を著しく減らした。
我々は、死亡リスクを評価するためのディープラーニングモデルを開発し、比較のためにいくつかのベースライン機械学習モデルを実装した。
結果: 特徴選択と深層学習にXGBoostを併用したXGB-DLモデルにより, 偽陽性を効果的に最小化した。
Model AUROC は初日 0.865 (95% CI: 0.821 - 0.905) から 4日で 0.903 (95% CI: 0.868 - 0.936) に改善された。
他のMLモデルもAUROCの観点からは良好に動作したが、より具体的な点からDeep Learningを選択した。
結論: 改良された特徴選択とデータクリーニングにより, 既存モデルに比べて13%のAUROC改善が得られたが, 以前の研究では1095から30に減少した。
関連論文リスト
- Utilizing Machine Learning Models to Predict Acute Kidney Injury in Septic Patients from MIMIC-III Database [0.0]
セプシス(Sepsis)は、体が感染に対して正しく反応しない重篤な疾患である。
敗血症患者では、約50%が急性腎障害(AKI)を発症する。
敗血症患者の特徴に基づいてAKIを正確に予測できるモデルは早期発見と介入に不可欠である。
論文 参考訳(メタデータ) (2024-12-04T22:05:35Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
セプシスはアメリカ合衆国と世界中で多くの死者を負う重篤な状態である。
機械学習を用いたこれまでの研究では、特徴選択とモデル解釈可能性に制限があった。
本研究は,院内敗血症死亡率を予測するための,解釈可能かつ正確な機械学習モデルを開発することを目的とした。
論文 参考訳(メタデータ) (2024-08-03T00:28:25Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
外傷性脳損傷(TBI)患者の呼吸器関連肺炎(VAP)は重大な死亡リスクをもたらす。
TBI患者のVAPのタイムリーな検出と予後は、患者の予後を改善し、医療資源の負担を軽減するために重要である。
我々はMIMIC-IIIデータベースを用いて6つの機械学習モデルを実装した。
論文 参考訳(メタデータ) (2024-08-02T09:44:18Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
我々は、新型コロナウイルス陽性の米国の患者の大規模な(110ドル以上)コホートでの入院を予測するために、さまざまなAIモデルを開発した。
高いデータアンバランスにもかかわらず、モデルは平均精度0.96-0.98 (0.75-0.85)、リコール0.96-0.98 (0.74-0.85)、F_score097-0.98 (0.79-0.83)に達する。
論文 参考訳(メタデータ) (2021-10-28T10:23:38Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - CT-based COVID-19 Triage: Deep Multitask Learning Improves Joint
Identification and Severity Quantification [45.86448200141968]
感染リスクのある患者をできるだけ早期に分離する研究を優先するための新型コロナウイルスの同定、重度定量化、重篤な患者の研究の強調、病院への誘導、救急医療の提供の2つの基本的な設定について述べる。
両トリアージアプローチを統合するマルチタスクアプローチを提案し、利用可能なラベルを1つのモデルにまとめる畳み込みニューラルネットワークを提案する。
我々は約2000件の公開CT研究をトレーニングし、32件のCOVID-19研究、30件の細菌性肺炎、31件の健常患者、および30件の肺病理患者からなる慎重に設計したセットを用いて、典型的な患者の血流をエミュレートする。
論文 参考訳(メタデータ) (2020-06-02T08:05:06Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
MODS患者は死亡リスクが高く予後不良である。
本研究は,MODS高齢者の早期死亡予測のための解釈可能・一般化可能なモデルを開発することを目的とする。
論文 参考訳(メタデータ) (2020-01-28T17:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。