論文の概要: Guitar Chord Diagram Suggestion for Western Popular Music
- arxiv url: http://arxiv.org/abs/2407.14260v1
- Date: Mon, 15 Jul 2024 07:44:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:34:39.026924
- Title: Guitar Chord Diagram Suggestion for Western Popular Music
- Title(参考訳): 西洋ポピュラー音楽のためのギターコードダイアグラムの提案
- Authors: Alexandre d'Hooge, Louis Bigo, Ken Déguernel, Nicolas Martin,
- Abstract要約: コードダイアグラムは、ギター奏者がフレットボードでコードを演奏する場所と方法を示すために使用される。
いくつかのコードダイアグラムは西洋のポピュラー音楽で過剰に表現されており、いくつかのコードダイアグラムは20以上の方法で演奏可能であることを示す。
コンテクストを考慮に入れれば、コードダイアグラムの提案の多様性や質が向上し、現在のコードラベルのみを考慮に入れたモデルと比較する。
- 参考スコア(独自算出の注目度): 43.58572466488356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chord diagrams are used by guitar players to show where and how to play a chord on the fretboard. They are useful to beginners learning chords or for sharing the hand positions required to play a song.However, the diagrams presented on guitar learning toolsare usually selected from an existing databaseand rarely represent the actual positions used by performers.In this paper, we propose a tool which suggests a chord diagram for achord label,taking into account the diagram of the previous chord.Based on statistical analysis of the DadaGP and mySongBook datasets, we show that some chord diagrams are over-represented in western popular musicand that some chords can be played in more than 20 different ways.We argue that taking context into account can improve the variety and the quality of chord diagram suggestion, and compare this approach with a model taking only the current chord label into account.We show that adding previous context improves the F1-score on this task by up to 27% and reduces the propensity of the model to suggest standard open chords.We also define the notion of texture in the context of chord diagrams andshow through a variety of metrics that our model improves textureconsistencywith the previous diagram.
- Abstract(参考訳): コードダイアグラムは、ギター奏者がフレットボードでコードを演奏する場所と方法を示すために使用される。
本論文では、DadaGPとmySongBookのデータセットの統計分析に基づいて、一部のコード図が西欧のポピュラー音楽において過剰に表現されていること、また、いくつかのコード図が20種類以上の方法で演奏可能であること、また、文脈を考慮すれば、コード図の多様性と質を向上させることができること、そして、このアプローチを、現在のコード図のみをコーディネートに含めるモデルと比較し、前回のF1のタスクを27%の精度で改善すること、そして、このモデルにより、標準的テクスチャのテクスチャのテクスチャとテクスチャの質を改善できることを示す。
関連論文リスト
- MIDI-to-Tab: Guitar Tablature Inference via Masked Language Modeling [6.150307957212576]
シンボリックギターのタブリング推定のための新しいディープラーニングソリューションを提案する。
我々は、文字列に音符を割り当てるために、マスク付き言語モデリングパラダイムでエンコーダ・デコーダ変換モデルを訓練する。
このモデルは、まず25K以上のタブチュアのデータセットであるDadaGPで事前トレーニングされ、その後、プロが書き起こしたギター演奏のキュレートセットで微調整される。
論文 参考訳(メタデータ) (2024-08-09T12:25:23Z) - Modeling Bends in Popular Music Guitar Tablatures [49.64902130083662]
タブラチュア表記はポピュラー音楽で広く使われ、ギター音楽のコンテンツの書き起こしや共有に使われている。
本論文は,音符のピッチを段階的にシフトできる屈曲に着目し,離散的な指板の物理的制限を回避する。
ポピュラー音楽の932個のリードギタータブラのコーパス上で実験を行い、決定木がF1スコア0.71と限られた偽陽性予測量で屈曲の発生をうまく予測することを示す。
論文 参考訳(メタデータ) (2023-08-22T07:50:58Z) - GTR-CTRL: Instrument and Genre Conditioning for Guitar-Focused Music
Generation with Transformers [14.025337055088102]
ギタータブ音楽生成にはDadaGPデータセット,GuitarProでは26万曲以上のコーパス,トークンフォーマットなどを用いています。
所望の楽器やジャンルに基づいてギタータブを生成するために,Transformer-XLディープラーニングモデルを条件付ける手法を提案する。
その結果、GTR-CTRL法は、無条件モデルよりもギター中心のシンボリック・ミュージック・ジェネレーションの柔軟性と制御性が高いことが示唆された。
論文 参考訳(メタデータ) (2023-02-10T17:43:03Z) - Melody transcription via generative pre-training [86.08508957229348]
メロディの書き起こしの鍵となる課題は、様々な楽器のアンサンブルや音楽スタイルを含む幅広いオーディオを処理できる方法を構築することである。
この課題に対処するために、広帯域オーディオの生成モデルであるJukebox(Dhariwal et al. 2020)の表現を活用する。
広義音楽のクラウドソースアノテーションから50ドル(約5,400円)のメロディ書き起こしを含む新しいデータセットを導出する。
論文 参考訳(メタデータ) (2022-12-04T18:09:23Z) - Re-creation of Creations: A New Paradigm for Lyric-to-Melody Generation [158.54649047794794]
Re-creation of Creations (ROC)は、歌詞からメロディ生成のための新しいパラダイムである。
ROCは、Lyric-to-Meody生成において、優れたLyric-Meody特徴アライメントを実現する。
論文 参考訳(メタデータ) (2022-08-11T08:44:47Z) - Jazz Contrafact Detection [0.0]
ジャズでは、コントラファクト(英: contrafact)は、既存の、しかししばしばリハーモネードされたコード進行によって構成される新しいメロディである。
本稿では, コード進行を表すベクトル空間モデルを開発し, コントラファクト検出に利用する。
論文 参考訳(メタデータ) (2022-08-01T12:07:20Z) - A Data-Driven Methodology for Considering Feasibility and Pairwise
Likelihood in Deep Learning Based Guitar Tablature Transcription Systems [18.247508110198698]
この作品では、シンボリック・タブラチュアを利用して、ギターの音符のペアの確率を推定する。
ベースライン表象転写モデルの出力層を再構成し、阻害損失を組み込むことで、不可能なノートペアの共活性化を防止できる。
これは自然にギターの演奏性制約を強制し、ペアの確率を推定するために使用されるシンボリックデータとより整合したタブラを与える。
論文 参考訳(メタデータ) (2022-04-17T22:10:37Z) - A-Muze-Net: Music Generation by Composing the Harmony based on the
Generated Melody [91.22679787578438]
ピアノ音楽のMidiファイルを生成する方法を提案する。
この方法は、左手を右手に固定した2つのネットワークを用いて、左右の手をモデル化する。
ミディは音階に不変な方法で表現され、メロディはハーモニーを調和させる目的で表現される。
論文 参考訳(メタデータ) (2021-11-25T09:45:53Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
ミュージック・ジェスチャ(Music Gesture)は、音楽演奏時の演奏者の身体と指の動きを明示的にモデル化するキーポイントに基づく構造化表現である。
まず、コンテキスト対応グラフネットワークを用いて、視覚的コンテキストと身体力学を統合し、その後、身体の動きと対応する音声信号とを関連付けるために、音声-視覚融合モデルを適用する。
論文 参考訳(メタデータ) (2020-04-20T17:53:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。