論文の概要: Interior Object Geometry via Fitted Frames
- arxiv url: http://arxiv.org/abs/2407.14357v1
- Date: Fri, 19 Jul 2024 14:38:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:15:09.208434
- Title: Interior Object Geometry via Fitted Frames
- Title(参考訳): フィッティングフレームを用いた内部物体形状計測
- Authors: Stephen M. Pizer, Zhiyuan Liu, Junjie Zhao, Nicholas Tapp-Hughes, James Damon, Miaomiao Zhang, JS Marron, Jared Vicory,
- Abstract要約: 本稿では,対象集団内での強い位置対応を実現するために,解剖学的対象を対象とする表現について述べる。
本手法は, 境界面および物体内部に嵌合したフレームを生成し, それらからアライメントフリーな幾何学的特徴を生成する。
- 参考スコア(独自算出の注目度): 18.564031163436553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a representation targeted for anatomic objects which is designed to enable strong locational correspondence within object populations and thus to provide powerful object statistics. The method generates fitted frames on the boundary and in the interior of objects and produces alignment-free geometric features from them. It accomplishes this by understanding an object as the diffeomorphic deformation of an ellipsoid and using a skeletal representation fitted throughout the deformation to produce a model of the target object, where the object is provided initially in the form of a boundary mesh. Via classification performance on hippocampi shape between individuals with a disorder vs. others, we compare our method to two state-of-the-art methods for producing object representations that are intended to capture geometric correspondence across a population of objects and to yield geometric features useful for statistics, and we show improved classification performance by this new representation, which we call the evolutionary s-rep. The geometric features that are derived from each of the representations, especially via fitted frames, is discussed.
- Abstract(参考訳): 本稿では,対象集団内における強力な位置対応を実現するために設計された解剖学的対象を対象とする表現について述べる。
本手法は, 境界面および物体内部に嵌合したフレームを生成し, それらからアライメントフリーな幾何学的特徴を生成する。
これは、物体を楕円体の微分変形として理解し、変形全体に収まる骨格表現を用いて対象物体のモデルを生成し、その対象物体を最初に境界メッシュの形で設けることによって達成する。
障害のある個体と他の個体との海馬形状の分類性能を比較検討し, 対象個体群間の幾何学的対応を捉え, 統計学に有用な幾何学的特徴を得るための2つの最先端オブジェクト表現法と比較し, 進化的s-rep(s-rep)と呼ぶ新しい表現による分類性能の向上を示す。
それぞれの表現から派生した幾何学的特徴について考察する。
関連論文リスト
- Category-level Shape Estimation for Densely Cluttered Objects [94.64287790278887]
そこで本研究では,密に散らばった物体のカテゴリレベルの形状推定手法を提案する。
我々のフレームワークは、多視点視覚情報融合によって、各オブジェクトをクラッタに分割する。
シミュレーション環境と実世界の実験から,本手法が高精度な形状推定を実現することが示された。
論文 参考訳(メタデータ) (2023-02-23T13:00:17Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
本稿では,1枚のRGB-D画像からカテゴリレベルのオブジェクト形状とポーズ推定を行う新しいフレームワークを提案する。
カテゴリ内変動に対処するために、様々な形状を統一された潜在空間にエンコードするセマンティックプリミティブ表現を採用する。
提案手法は,実世界のデータセットにおいて,SOTAのポーズ推定性能とより優れた一般化を実現する。
論文 参考訳(メタデータ) (2022-10-03T17:51:54Z) - NeuForm: Adaptive Overfitting for Neural Shape Editing [67.16151288720677]
我々は,各形状領域に最も適した表現を適応的に使用することにより,過度に適合した表現と一般化可能な表現の両方の利点を組み合わせるために,NEUFORMを提案する。
椅子やテーブル,ランプなど,人間が設計した形状のパーツの再構成に成功した編集を実演する。
2つの最先端のコンペティタを比較し、その結果の妥当性と忠実さに関して、明確な改善を実証する。
論文 参考訳(メタデータ) (2022-07-18T19:00:14Z) - Object Structural Points Representation for Graph-based Semantic
Monocular Localization and Mapping [9.61301182502447]
本稿では,単一分子意味論的SLAMシステムにおいて,対象の幾何学をランドマークとして用いるための,構造点に基づく効率的な表現法を提案する。
特に、ポーズグラフ内のランドマークノードに対して、オブジェクトの位置、向き、サイズ/スケールを格納する逆深さパラメトリゼーションを提案する。
論文 参考訳(メタデータ) (2022-06-21T11:32:55Z) - Towards Self-Supervised Category-Level Object Pose and Size Estimation [121.28537953301951]
本研究は,一深度画像からのカテゴリレベルのオブジェクトポーズとサイズ推定のための自己教師型フレームワークを提案する。
我々は、同じ形状の点雲における幾何学的整合性を利用して自己超越する。
論文 参考訳(メタデータ) (2022-03-06T06:02:30Z) - OMAD: Object Model with Articulated Deformations for Pose Estimation and
Retrieval [46.813224754603866]
本稿では,調音対象を明示的にモデル化するために,Articulated deformations (OMAD) を用いたオブジェクトモデルというカテゴリ固有表現を提案する。
対象の形状と結合状態の完全な表現により,カテゴリレベルのオブジェクトポーズ推定や明瞭なオブジェクト検索など,いくつかの課題に対処できる。
論文 参考訳(メタデータ) (2021-12-14T12:45:49Z) - ELLIPSDF: Joint Object Pose and Shape Optimization with a Bi-level
Ellipsoid and Signed Distance Function Description [9.734266860544663]
本稿では,関節オブジェクトのポーズと形状最適化のための表現的かつコンパクトなモデルを提案する。
多視点RGB-Dカメラ観測からオブジェクトレベルのマップを推論する。
提案手法は,大規模実世界のScanNetデータセットを用いて評価し,最先端の手法と比較する。
論文 参考訳(メタデータ) (2021-08-01T03:07:31Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
入力2つの3次元形状を考慮したニューラルネットワークアーキテクチャであるNeuroMorphを提案する。
NeuroMorphはそれらの間のスムーズかつポイントツーポイント対応を生成する。
異なる対象カテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
論文 参考訳(メタデータ) (2021-06-17T12:25:44Z) - Continuous Surface Embeddings [76.86259029442624]
我々は、変形可能な対象カテゴリーにおける密接な対応を学習し、表現するタスクに焦点をあてる。
本稿では,高密度対応の新たな学習可能な画像ベース表現を提案する。
提案手法は,人間の身近なポーズ推定のための最先端手法と同等以上の性能を示すことを示す。
論文 参考訳(メタデータ) (2020-11-24T22:52:15Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
本稿では、勾配に基づくフィッティング法とパラメトリックニューラルネットワーク合成モジュールを組み合わせる。
画像合成ネットワークは、ポーズ設定空間を効率的に分散するように設計されている。
本研究では,2次元画像のみから高精度に物体の向きを復元できることを実験的に示す。
論文 参考訳(メタデータ) (2020-08-18T20:30:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。