論文の概要: The Extrapolation Power of Implicit Models
- arxiv url: http://arxiv.org/abs/2407.14430v1
- Date: Fri, 19 Jul 2024 16:01:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 16:55:32.283923
- Title: The Extrapolation Power of Implicit Models
- Title(参考訳): 入射モデルにおける外挿力
- Authors: Juliette Decugis, Alicia Y. Tsai, Max Emerling, Ashwin Ganesh, Laurent El Ghaoui,
- Abstract要約: 暗黙のモデルは、アウト・オブ・ディストリビューション、地理的、時間的シフトといった様々な外挿シナリオでテストに投入される。
我々の実験は暗黙のモデルで常に大きな性能上の優位性を証明している。
- 参考スコア(独自算出の注目度): 2.3526338188342653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the extrapolation capabilities of implicit deep learning models in handling unobserved data, where traditional deep neural networks may falter. Implicit models, distinguished by their adaptability in layer depth and incorporation of feedback within their computational graph, are put to the test across various extrapolation scenarios: out-of-distribution, geographical, and temporal shifts. Our experiments consistently demonstrate significant performance advantage with implicit models. Unlike their non-implicit counterparts, which often rely on meticulous architectural design for each task, implicit models demonstrate the ability to learn complex model structures without the need for task-specific design, highlighting their robustness in handling unseen data.
- Abstract(参考訳): 本稿では,従来の深層ニューラルネットワークがフェールする未観測データを扱う際の暗黙的な深層学習モデルの補間能力について検討する。
層深度への適応性と計算グラフへのフィードバックの組み入れにより区別された暗黙のモデルは、様々な外挿シナリオ(アウト・オブ・ディストリビューション、地理的、時間的シフト)でテストされる。
我々の実験は暗黙のモデルで常に大きな性能上の優位性を証明している。
暗黙的なモデルは、タスク固有の設計を必要とせずに複雑なモデル構造を学ぶ能力を示し、目に見えないデータを扱う際の堅牢さを強調している。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics [2.2489531925874013]
ディープラーニングは、気象予報に革命をもたらしており、新しいデータ駆動モデルは、中期予測のための運用物理モデルと同等の精度を達成している。
これらのモデルは解釈可能性に欠けることが多く、基礎となる力学を理解するのが難しく、説明が難しい。
本稿では、データ駆動モデルの透明性を高めるために、複雑な非線形力学の線形表現を提供するクープマン作用素を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T13:56:54Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
事前訓練されたモデルの任意のペアリングに対して、一方のモデルは他方では利用できない重要なデータコンテキストを抽出する。
このような「補的」な知識を,性能劣化を伴わずに,あるモデルから別のモデルへ伝達できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-10-26T17:59:46Z) - Compositional Abilities Emerge Multiplicatively: Exploring Diffusion
Models on a Synthetic Task [20.749514363389878]
合成環境における条件拡散モデルにおける合成一般化について検討する。
サンプルを生成する能力が出現する順番は、基礎となるデータ生成プロセスの構造によって制御される。
本研究は、データ中心の観点から、生成モデルにおける能力と構成性を理解するための基礎を築いた。
論文 参考訳(メタデータ) (2023-10-13T18:00:59Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
予測符号化は、当初脳の情報処理をモデル化するために開発されたメッセージパッシングフレームワークである。
本研究では,予測符号化のメッセージパス規則に依存するモデルを構築する。
提案したモデルは,帰納的タスクと帰納的タスクの両方において,標準的なモデルに匹敵する性能を示す。
論文 参考訳(メタデータ) (2022-12-09T03:58:22Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Gradients as Features for Deep Representation Learning [26.996104074384263]
本稿では,事前学習したディープ・ネットワークを様々なタスクに適応させることによって,ディープ・表現学習の課題に対処する。
我々の重要な革新は、事前訓練されたネットワークの勾配と活性化の両方を組み込んだ線形モデルの設計である。
我々は,実際の勾配を計算せずに,モデルのトレーニングと推論を効率的に行うアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T02:57:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。