論文の概要: The Collection of a Human Robot Collaboration Dataset for Cooperative Assembly in Glovebox Environments
- arxiv url: http://arxiv.org/abs/2407.14649v1
- Date: Fri, 19 Jul 2024 19:56:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 21:33:49.324722
- Title: The Collection of a Human Robot Collaboration Dataset for Cooperative Assembly in Glovebox Environments
- Title(参考訳): グローブボックス環境における協調組立のための人間ロボット協調データセットの収集
- Authors: Shivansh Sharma, Mathew Huang, Sanat Nair, Alan Wen, Christina Petlowany, Juston Moore, Selma Wanna, Mitch Pryor,
- Abstract要約: 産業4.0は、製造プロセスの近代化のための変革的ソリューションとしてAIを導入した。その後継である産業5.0は、AI駆動ソリューションを導くために、人間を協力者と専門家として想定している。
新しい技術は、共同組み立て中にシーン、特に手の位置を安全かつリアルタイムに識別できるアルゴリズムを必要とする。
このデータセットは、産業的な人間のコラボレーションシナリオにおいて、手動と手袋のセグメンテーションに向けたアプリケーションを構築する上で、1200の難しい例を提供します。
- 参考スコア(独自算出の注目度): 2.30069810310356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Industry 4.0 introduced AI as a transformative solution for modernizing manufacturing processes. Its successor, Industry 5.0, envisions humans as collaborators and experts guiding these AI-driven manufacturing solutions. Developing these techniques necessitates algorithms capable of safe, real-time identification of human positions in a scene, particularly their hands, during collaborative assembly. Although substantial efforts have curated datasets for hand segmentation, most focus on residential or commercial domains. Existing datasets targeting industrial settings predominantly rely on synthetic data, which we demonstrate does not effectively transfer to real-world operations. Moreover, these datasets lack uncertainty estimations critical for safe collaboration. Addressing these gaps, we present HAGS: Hand and Glove Segmentation Dataset. This dataset provides 1200 challenging examples to build applications toward hand and glove segmentation in industrial human-robot collaboration scenarios as well as assess out-of-distribution images, constructed via green screen augmentations, to determine ML-classifier robustness. We study state-of-the-art, real-time segmentation models to evaluate existing methods. Our dataset and baselines are publicly available: https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/85R7KQ and https://github.com/UTNuclearRoboticsPublic/assembly_glovebox_dataset.
- Abstract(参考訳): 産業4.0は、製造プロセスの近代化のための変革的ソリューションとしてAIを導入した。
その後継者であるIndustrial 5.0は、AI駆動製造ソリューションを導く協力者や専門家として人間を想定している。
これらの技術を開発するには、協調的な組み立て中にシーン、特に手の位置を安全かつリアルタイムに識別できるアルゴリズムが必要である。
かなりの努力が手作業のセグメンテーションのためのデータセットをキュレートしてきたが、ほとんどは住宅や商業ドメインに焦点を当てている。
産業環境をターゲットとした既存のデータセットは、主に合成データに依存しており、実世界の運用に効果的に移行しないことを実証する。
さらに、これらのデータセットは安全なコラボレーションに不可欠な不確実性推定を欠いている。
これらのギャップに対処するため、HAGS: Hand and Glove Segmentation Datasetを提示します。
このデータセットは、産業用ロボットコラボレーションシナリオにおける手動と手袋のセグメンテーションに向けたアプリケーションを構築する上で、1200の難しい例を提供するとともに、グリーンスクリーン拡張によって構築された配布外画像を評価し、ML分類器の堅牢性を決定する。
既存の手法を評価するために,最先端のリアルタイムセグメンテーションモデルについて検討する。
私たちのデータセットとベースラインは、 https://dataverse.tdl.org/dataset.xhtml?
persistentId=doi:10.18738/T8/85R7KQ and https://github.com/UTNuclearRoboticsPublic/assembly_glovebox_dataset
関連論文リスト
- Language Supervised Human Action Recognition with Salient Fusion: Construction Worker Action Recognition as a Use Case [8.26451988845854]
本研究では,人間の行動認識(HAR)に骨格と視覚的手がかりをベースとした新しいアプローチを提案する。
特徴表現を最適化するために,スケルトンモダリティを条件とした言語モデルに対して学習可能なプロンプトを用いる。
建設現場における実世界のロボット応用に適した新しいデータセットを導入し,視覚,骨格,深度データモダリティを特徴とする。
論文 参考訳(メタデータ) (2024-10-02T19:10:23Z) - Efficient Data Collection for Robotic Manipulation via Compositional Generalization [70.76782930312746]
本研究では, 環境要因をデータから構成し, 未確認の要因の組み合わせに遭遇した場合に成功できることを示す。
コンポジションを利用したドメイン内データ収集手法を提案する。
ビデオはhttp://iliad.stanford.edu/robot-data-comp/で公開しています。
論文 参考訳(メタデータ) (2024-03-08T07:15:38Z) - Learning Human Action Recognition Representations Without Real Humans [66.61527869763819]
そこで本研究では,仮想人間を含む合成データを用いて,実世界の映像を活用してモデルを事前学習するベンチマークを提案する。
次に、このデータに基づいて学習した表現を、下流行動認識ベンチマークの様々なセットに転送可能であるかを評価する。
私たちのアプローチは、以前のベースラインを最大5%上回ります。
論文 参考訳(メタデータ) (2023-11-10T18:38:14Z) - Exploiting Multimodal Synthetic Data for Egocentric Human-Object
Interaction Detection in an Industrial Scenario [14.188006024550257]
EgoISM-HOIは,手や物体のアノテーションが豊富な産業環境下で合成されたEHOI画像からなる,新しいマルチモーダルデータセットである。
本研究は,提案手法を事前学習するために合成データを活用することにより,実世界のデータでテストした場合の性能が著しく向上することを示す。
この分野での研究を支援するため、私たちはデータセット、ソースコード、事前トレーニングされたモデルをhttps://iplab.dmi.unict.it/egoism-hoi.comで公開しています。
論文 参考訳(メタデータ) (2023-06-21T09:56:55Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
ロボット制御ジェスチャー(RoCoG-v2)と呼ばれる新しいデータセットを導入する。
データセットは7つのジェスチャークラスの実ビデオと合成ビデオの両方で構成されている。
我々は,最先端の行動認識とドメイン適応アルゴリズムを用いて結果を示す。
論文 参考訳(メタデータ) (2023-03-17T23:23:55Z) - COVERED, CollabOratiVE Robot Environment Dataset for 3D Semantic
segmentation [39.64058995273062]
この研究は、このユースケース用に特別に設計された"CoVERED"という新しいデータセットを開発する。
本稿では,現在最先端(SOTA)アルゴリズムの性能をデータセット上で評価し,マルチLiDARシステムを用いた協調作業空間のリアルタイムセマンティックセマンティックセグメンテーションを実演する。
我々の知覚パイプラインは、8Hzのスループットを維持しながら、予測点精度が$>96%、$>92%の平均交叉率(mIOU)で20Hzのスループットを達成する。
論文 参考訳(メタデータ) (2023-02-24T14:24:58Z) - Towards Multi-User Activity Recognition through Facilitated Training
Data and Deep Learning for Human-Robot Collaboration Applications [2.3274633659223545]
本研究では、シングルユーザに関するデータを収集し、後処理でそれらをマージすることで、マルチユーザアクティビティに関するデータを集める方法を提案する。
同じ設定で記録されたユーザのグループに関するトレーニングデータを使用する場合と比較して、この方法で収集されたデータをHRC設定のペアに使用し、同様のパフォーマンスを得ることができる。
論文 参考訳(メタデータ) (2023-02-11T19:27:07Z) - Video-based Pose-Estimation Data as Source for Transfer Learning in
Human Activity Recognition [71.91734471596433]
オンボディデバイスを用いたヒューマンアクティビティ認識(HAR)は、制約のない環境での特定の人間の行動を特定する。
これまでの研究は、トランスファーラーニングが、少ないデータでシナリオに対処するための良い戦略であることを実証した。
本稿では,人為的位置推定を目的としたデータセットを伝達学習の情報源として用いることを提案する。
論文 参考訳(メタデータ) (2022-12-02T18:19:36Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - PeopleSansPeople: A Synthetic Data Generator for Human-Centric Computer
Vision [3.5694949627557846]
我々は人間中心の合成データ生成装置 PeopleSansPeople をリリースする。
シミュレーション可能な3Dアセット、パラメータ化照明とカメラシステム、および2Dおよび3Dバウンディングボックス、インスタンスとセマンティックセグメンテーション、COCOポーズラベルを生成する。
論文 参考訳(メタデータ) (2021-12-17T02:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。