論文の概要: Universal Medical Imaging Model for Domain Generalization with Data Privacy
- arxiv url: http://arxiv.org/abs/2407.14719v1
- Date: Sat, 20 Jul 2024 01:24:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 21:14:02.703704
- Title: Universal Medical Imaging Model for Domain Generalization with Data Privacy
- Title(参考訳): データプライバシを用いた領域一般化のためのユニバーサル医療画像モデル
- Authors: Ahmed Radwan, Islam Osman, Mohamed S. Shehata,
- Abstract要約: 本稿では,複数の局所モデルからグローバルモデルへ知識を伝達するフェデレート学習手法を提案する。
主な目的は、幅広い医療画像タスクを実行できるグローバルモデルを訓練することである。
- 参考スコア(独自算出の注目度): 2.8727695958743364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving domain generalization in medical imaging poses a significant challenge, primarily due to the limited availability of publicly labeled datasets in this domain. This limitation arises from concerns related to data privacy and the necessity for medical expertise to accurately label the data. In this paper, we propose a federated learning approach to transfer knowledge from multiple local models to a global model, eliminating the need for direct access to the local datasets used to train each model. The primary objective is to train a global model capable of performing a wide variety of medical imaging tasks. This is done while ensuring the confidentiality of the private datasets utilized during the training of these models. To validate the effectiveness of our approach, extensive experiments were conducted on eight datasets, each corresponding to a different medical imaging application. The client's data distribution in our experiments varies significantly as they originate from diverse domains. Despite this variation, we demonstrate a statistically significant improvement over a state-of-the-art baseline utilizing masked image modeling over a diverse pre-training dataset that spans different body parts and scanning types. This improvement is achieved by curating information learned from clients without accessing any labeled dataset on the server.
- Abstract(参考訳): 医用画像における領域一般化の達成は、主にこの領域で公開ラベル付きデータセットが限られているため、大きな課題となる。
この制限は、データのプライバシと、データの正確なラベル付けに必要な医療専門知識に関する懸念から生じる。
本稿では,複数のローカルモデルからグローバルモデルに知識を伝達するフェデレート学習手法を提案する。
主な目的は、幅広い医療画像タスクを実行できるグローバルモデルを訓練することである。
これは、これらのモデルのトレーニング中に使用されるプライベートデータセットの機密性を確保しながら行われる。
提案手法の有効性を検証するため, 異なる医用画像アプリケーションに対応する8つのデータセットを用いて広範囲な実験を行った。
我々の実験では、クライアントのデータ分布は、様々なドメインに由来するため、大きく異なる。
この変動にもかかわらず、異なる身体部位と走査型にまたがる多様な事前学習データセット上で、マスク付き画像モデリングを利用した最先端のベースラインに対する統計的に有意な改善を示す。
この改善は、サーバ上のラベル付きデータセットにアクセスすることなく、クライアントから学んだ情報をキュレートすることで達成される。
関連論文リスト
- A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis [48.84443450990355]
ディープネットワークは、医学的なスキャンに適用すると、例外のない状況で失敗することが多いため、自然画像の解析において広く成功している。
胸部X線や皮膚病変画像の文脈において、異なる病院から採取したデータや、性別、人種などの人口統計学的変数によって構築されたデータなど、ドメインシフトに対するモデル感度に焦点をあてる。
医学教育からインスピレーションを得て,自然言語で伝達される明示的な医学知識を基盤としたディープネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T17:55:02Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Federated Data Model [16.62770246342126]
人工知能(AI)、特にディープラーニングでは、データ多様性とボリュームがモデル開発において重要な役割を果たす。
我々はFDM(Federated Data Model)と呼ばれる手法を開発し、様々な場所で堅牢なディープラーニングモデルを訓練した。
その結果,本手法でトレーニングしたモデルは,当初トレーニングしたデータと,他のサイトのデータの両方で良好に動作することがわかった。
論文 参考訳(メタデータ) (2024-03-13T18:16:54Z) - Building Universal Foundation Models for Medical Image Analysis with
Spatially Adaptive Networks [5.661631789478932]
医用画像解析のための普遍的基礎モデルを提案する。
55の公開医用画像データセット上のマスク画像モデリング(MIM)を用いて、空間適応型視覚トークンーザ(SPAD-VT)と空間適応型視覚変換器(SPAD-ViT)を事前訓練する。
下流の医用画像分類とセグメンテーションタスクの実験結果から,本モデルの性能とラベルの効率が向上したことを示す。
論文 参考訳(メタデータ) (2023-12-12T08:33:45Z) - Multi-domain improves out-of-distribution and data-limited scenarios for medical image analysis [2.315156126698557]
特殊ドメインの代わりに複数のドメインを組み込んだモデルを用いることで、特殊モデルで観測される制限が大幅に軽減されることを示す。
臓器認識では、従来の特殊なモデルと比較して、マルチドメインモデルは精度を最大8%向上させることができる。
論文 参考訳(メタデータ) (2023-10-10T16:07:23Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
実世界のシナリオでは、トレーニング中に露出していない新しいドメインや異なるドメインのデータに遭遇することが一般的である。
ドメイン一般化(Domain Generalization, DG)は、モデルがこれまで見つからなかったドメインからのデータを扱うことを可能にする、有望な方向である。
本稿では,敵対的トレーニングを活用して無限のスタイルでトレーニングデータを生成する,AdverIN(Adversarial Intensity Attack)と呼ばれる新しいDG手法を提案する。
論文 参考訳(メタデータ) (2023-04-05T19:40:51Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T20:05:35Z) - Real-World Multi-Domain Data Applications for Generalizations to
Clinical Settings [1.508558791031741]
ディープラーニングモデルは、臨床試験のような人工的な設定から標準化されたデータセットでトレーニングされた場合、うまく機能する。
マルチドメイン実世界のデータセットに転送学習を用いた自己教師型アプローチを用いることで、標準化されたデータセットに対して16%の相対的改善が達成できることを示す。
論文 参考訳(メタデータ) (2020-07-24T17:41:23Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
我々は、GS-WGAN(Gradient-sanitized Wasserstein Generative Adrial Networks)を提案する。
GS-WGANは、厳格なプライバシー保証を備えた機密データの衛生的な形式での公開を可能にする。
このアプローチは、複数のメトリクスにわたる最先端のアプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2020-06-15T10:01:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。