論文の概要: Implementing Fairness in AI Classification: The Role of Explainability
- arxiv url: http://arxiv.org/abs/2407.14766v2
- Date: Mon, 24 Mar 2025 05:27:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:32:57.777886
- Title: Implementing Fairness in AI Classification: The Role of Explainability
- Title(参考訳): AI分類におけるフェアネスの実践 - 説明可能性の役割
- Authors: Thomas Souverain, Johnathan Nguyen, Nicolas Meric, Paul Égré,
- Abstract要約: AI分類における公平性の実装には、公正度測定を単に運用すること以上の作業が必要だ、と我々は主張する。
トレーニングプロセスを透過化し、フェアネス基準が実際に生み出す成果を判断し、トレードオフを評価する。
これらの説明的なステップがAIモデルを信頼できるものにする方法に関する結論を導きます。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we propose a philosophical and experimental investigation of the problem of AI fairness in classification. We argue that implementing fairness in AI classification involves more work than just operationalizing a fairness metric. It requires establishing the explainability of the classification model chosen and of the principles behind it. Specifically, it involves making the training processes transparent, determining what outcomes the fairness criteria actually produce, and assessing their trade-offs by comparison with closely related models that would lead to a different outcome. To exemplify this methodology, we trained a model and developed a tool for disparity detection and fairness interventions, the package FairDream. While FairDream is set to enforce Demographic Parity, experiments reveal that it fulfills the constraint of Equalized Odds. The algorithm is thus more conservative than the user might expect. To justify this outcome, we first clarify the relation between Demographic Parity and Equalized Odds as fairness criteria. We then explain FairDream's reweighting method and justify the trade-offs reached by FairDream by a benchmark comparison with closely related GridSearch models. We draw conclusions regarding the way in which these explanatory steps can make an AI model trustworthy.
- Abstract(参考訳): 本稿では,分類におけるAIフェアネスの問題に関する哲学的,実験的研究を提案する。
AI分類における公平性の実装には、公正度測定を単に運用すること以上の作業が必要だ、と我々は主張する。
選択された分類モデルとその背景にある原則の説明可能性を確立する必要がある。
具体的には、トレーニングプロセスを透過化し、公正基準が実際に生み出す成果を判断し、異なる結果をもたらす密接な関係のあるモデルと比較してトレードオフを評価する。
この手法を実証するため,我々はモデルの訓練を行い,FairDreamパッケージである不均一検出と公正介入のためのツールを開発した。
FairDreamはDemographic Parityの実施を予定しているが、実験の結果、等化オッドの制約を満たすことが判明した。
したがって、アルゴリズムはユーザーが予想するよりも保守的である。
この結果を正当化するために、まず、公正度基準として、デモグラフィックパリティと等化オッドの関係を明らかにする。
次に、FairDreamの再重み付け方法を説明し、FairDreamが到達したトレードオフを、密接に関連するGridSearchモデルと比較して正当化する。
これらの説明的なステップがAIモデルを信頼できるものにする方法に関する結論を導きます。
関連論文リスト
- What's Distributive Justice Got to Do with It? Rethinking Algorithmic Fairness from the Perspective of Approximate Justice [1.8434042562191815]
不完全な意思決定システムという文脈では、個人間での利益/利益の理想的な分配がどのようなものになるかだけを気にすべきではない、と私たちは主張する。
このためには、アルゴリズムフェアネス研究者として、分配的正義を見極め、公正性基準を使用する方法を再考する必要がある。
論文 参考訳(メタデータ) (2024-07-17T11:13:23Z) - What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
強化学習問題では、エージェントはリターンを最大化しながら長期的な公正性を考慮する必要がある。
近年の研究では様々なフェアネスの概念が提案されているが、RL問題における不公平性がどのように生じるかは定かではない。
我々は、環境力学から生じる不平等を明示的に捉える、ダイナミックスフェアネスという新しい概念を導入する。
論文 参考訳(メタデータ) (2024-04-16T22:47:59Z) - Causal Context Connects Counterfactual Fairness to Robust Prediction and
Group Fairness [15.83823345486604]
我々は、公正性と正確性の間に根本的なトレードオフがないことを示すことによって、事実的公正を動機付けます。
対実フェアネスは、比較的単純なグループフェアネスの測定によってテストされることがある。
論文 参考訳(メタデータ) (2023-10-30T16:07:57Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Counterfactual Fairness Is Basically Demographic Parity [0.0]
公正な意思決定は、倫理的に機械学習アルゴリズムを社会的設定で実装する上で重要である。
また, 対実的公正性を満たすアルゴリズムが, 人口統計学的平等を満足することを示す。
我々は、保護グループ内の個人の秩序を維持するという具体的な公正目標を定式化する。
論文 参考訳(メタデータ) (2022-08-07T23:38:59Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - On Disentangled and Locally Fair Representations [95.6635227371479]
人種や性別などのセンシティブなグループに対して公平な方法で分類を行うという課題について検討する。
局所的公正表現を学習し、学習された表現の下で、各サンプルの近傍は感度特性の観点からバランスをとる。
論文 参考訳(メタデータ) (2022-05-05T14:26:50Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Are There Exceptions to Goodhart's Law? On the Moral Justification of Fairness-Aware Machine Learning [14.428360876120333]
公正度対策はグッドハートの法則に特に敏感であると主張する。
公正度尺度の正当性に関する道徳的推論の枠組みを提示する。
論文 参考訳(メタデータ) (2022-02-17T09:26:39Z) - Fair Representation: Guaranteeing Approximate Multiple Group Fairness
for Unknown Tasks [17.231251035416648]
本研究では,未知のタスクに対して公平性を保証し,複数のフェアネス概念を同時に活用できるかどうかを考察する。
公平な表現は全ての予測タスクに対して公平性を保証するわけではないが、重要なタスクのサブセットに対して公平性を保証する。
論文 参考訳(メタデータ) (2021-09-01T17:29:11Z) - Algorithmic Decision Making with Conditional Fairness [48.76267073341723]
条件付きフェアネスを、条件付きフェアネス変数の条件付けにより、より健全なフェアネス計量として定義する。
本稿では,アルゴリズム決定の精度と公平性のトレードオフを追跡するために,導出条件公正規則化器(DCFR)を提案する。
論文 参考訳(メタデータ) (2020-06-18T12:56:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。