論文の概要: I Need Help! Evaluating LLM's Ability to Ask for Users' Support: A Case Study on Text-to-SQL Generation
- arxiv url: http://arxiv.org/abs/2407.14767v2
- Date: Mon, 30 Sep 2024 01:45:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 19:27:32.158095
- Title: I Need Help! Evaluating LLM's Ability to Ask for Users' Support: A Case Study on Text-to-SQL Generation
- Title(参考訳): 助けが必要! LLM のユーザサポートに対する質問能力の評価:テキストからSQL生成を事例として
- Authors: Cheng-Kuang Wu, Zhi Rui Tam, Chao-Chung Wu, Chieh-Yen Lin, Hung-yi Lee, Yun-Nung Chen,
- Abstract要約: 本研究では,LLMのユーザサポートを積極的に行う能力について検討する。
性能改善とユーザ負担のトレードオフを評価する指標を提案する。
我々の実験は、外部からのフィードバックがなければ、多くのLCMがユーザサポートの必要性を認識するのに苦労していることを示している。
- 参考スコア(独自算出の注目度): 60.00337758147594
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study explores the proactive ability of LLMs to seek user support. We propose metrics to evaluate the trade-off between performance improvements and user burden, and investigate whether LLMs can determine when to request help under varying information availability. Our experiments show that without external feedback, many LLMs struggle to recognize their need for user support. The findings highlight the importance of external signals and provide insights for future research on improving support-seeking strategies. Source code: https://github.com/appier-research/i-need-help
- Abstract(参考訳): 本研究は, LLMのユーザサポートを積極的に行う能力について考察する。
本稿では,性能改善とユーザ負担のトレードオフを評価する指標を提案し,LLMが情報提供状況の異なる支援をいつ要求するかを判断できるかどうかを検討する。
我々の実験は、外部からのフィードバックがなければ、多くのLCMがユーザサポートの必要性を認識するのに苦労していることを示している。
本研究は, 外部信号の重要性を強調し, 今後の支援探索戦略の改善に向けた知見を提供するものである。
ソースコード:https://github.com/appier-research/i-need-help
関連論文リスト
- Grounding by Trying: LLMs with Reinforcement Learning-Enhanced Retrieval [55.63711219190506]
大きな言語モデル(LLM)は、しばしば適切な検索クエリのポーズに苦労する。
私たちは$underlineLe$arningを$underlineRe$trieveに$underlineT$rying (LeReT)を導入します。
LeReTは、絶対精度を最大29%向上し、下流ジェネレータの評価を17%向上させることができる。
論文 参考訳(メタデータ) (2024-10-30T17:02:54Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - AGILE: A Novel Reinforcement Learning Framework of LLM Agents [7.982249117182315]
本稿では,ユーザとの複雑な対話処理を実現するために,LLMエージェントの強化学習フレームワークを提案する。
エージェントは、リフレクション、ツールの使用、専門家の相談など、会話以外の能力を持っている。
実験の結果, PPOで訓練した7Bおよび13B LLMをベースとしたAGILEは, GPT-4エージェントより優れていた。
論文 参考訳(メタデータ) (2024-05-23T16:17:44Z) - When to Retrieve: Teaching LLMs to Utilize Information Retrieval Effectively [3.705145020383824]
本稿では,Large Language Models (LLMs) が,与えられた質問に答えるために追加のコンテキストを必要とする場合に,既製の情報検索(IR)システムを使用する方法を示す。
論文 参考訳(メタデータ) (2024-04-30T16:52:55Z) - LLM In-Context Recall is Prompt Dependent [0.0]
これを行うモデルの能力は、実世界のアプリケーションにおける実用性と信頼性に大きな影響を及ぼす。
本研究は, LLMのリコール能力がプロンプトの内容に影響を及ぼすだけでなく, トレーニングデータのバイアスによって損なわれる可能性があることを示す。
論文 参考訳(メタデータ) (2024-04-13T01:13:59Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Why and When LLM-Based Assistants Can Go Wrong: Investigating the
Effectiveness of Prompt-Based Interactions for Software Help-Seeking [5.755004576310333]
大規模言語モデル(LLM)アシスタントは、ユーザーがソフトウェアをナビゲートするための検索方法の潜在的な代替手段として登場した。
LLMアシスタントは、ドメイン固有のテキスト、ソフトウェアマニュアル、コードリポジトリからの膨大なトレーニングデータを使用して、人間のようなインタラクションを模倣する。
論文 参考訳(メタデータ) (2024-02-12T19:49:58Z) - ToolQA: A Dataset for LLM Question Answering with External Tools [14.408707186450899]
大規模言語モデル (LLM) は様々なNLPタスクにおいて顕著な性能を示した。
彼らはまだ幻覚や弱い数値推論のような困難に悩まされている。
これらの課題を克服するために、LLMの質問応答能力を高めるために外部ツールを使用することができる。
論文 参考訳(メタデータ) (2023-06-23T05:43:28Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - Attributed Question Answering: Evaluation and Modeling for Attributed
Large Language Models [68.37431984231338]
大規模言語モデル(LLM)は、直接の監督をほとんど必要とせず、様々なタスクにわたって印象的な結果を示している。
我々は、LLMが生成するテキストの属性に持つ能力は、この設定においてシステム開発者とユーザの両方にとって不可欠であると信じている。
論文 参考訳(メタデータ) (2022-12-15T18:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。