論文の概要: Designing Algorithms Empowered by Language Models: An Analytical Framework, Case Studies, and Insights
- arxiv url: http://arxiv.org/abs/2407.14788v3
- Date: Sun, 12 Oct 2025 06:39:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.489386
- Title: Designing Algorithms Empowered by Language Models: An Analytical Framework, Case Studies, and Insights
- Title(参考訳): 言語モデルを活用したアルゴリズム設計:分析フレームワーク,ケーススタディ,インサイト
- Authors: Yanxi Chen, Yaliang Li, Bolin Ding, Jingren Zhou,
- Abstract要約: 本研究では,大規模言語モデル(LLM)に基づくアルゴリズムの設計と解析のための分析フレームワークを提案する。
提案する枠組みは頭痛を緩和する試みとして機能する。
- 参考スコア(独自算出の注目度): 86.06371692309972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents an analytical framework for the design and analysis of LLM-based algorithms, i.e., algorithms that contain one or multiple calls of large language models (LLMs) as sub-routines and critically rely on the capabilities of LLMs. While such algorithms, ranging from basic LLM calls with prompt engineering to complicated LLM-powered agentic workflows and compound AI systems, have achieved remarkable empirical success, their design and optimization oftentimes require extensive trial-and-errors and case-by-case analysis. Our proposed framework serves as an attempt to mitigate such headaches, offering a formal and systematic approach for analyzing how the accuracy and efficiency of an LLM-based algorithm will be impacted by critical design choices, such as the pattern and granularity of task decomposition, or the prompt for each LLM call. Through a wide range of case studies covering diverse algorithm patterns (including parallel/hierarchical/recursive task decomposition and generic directed acyclic graphs), we demonstrate the proposed framework in action and derive interesting insights that generalize across scenarios, accompanied by systematic empirical validation in synthetic settings.
- Abstract(参考訳): この研究は、LLMベースのアルゴリズムの設計と分析のための分析フレームワーク、すなわち1つまたは複数の大きな言語モデル(LLM)をサブルーチンとして含み、LLMの機能に批判的に依存するアルゴリズムを提示する。
基本的なLLMコールから複雑なLLM駆動のエージェントワークフローや複合AIシステムまで、このようなアルゴリズムは驚くほど成功したが、その設計と最適化はしばしば大規模な試行錯誤とケースバイケース分析を必要とする。
提案手法は,LLMに基づくアルゴリズムの精度と効率が,タスク分解のパターンや粒度,あるいは各LLM呼び出しのプロンプトといった重要な設計選択にどのように影響するかを解析するための,形式的かつ体系的なアプローチを提供する。
並列/階層的/再帰的タスク分解や汎用的非巡回グラフを含む)多様なアルゴリズムパターンをカバーする幅広いケーススタディを通じて,提案するフレームワークを実演し,合成設定における体系的経験的検証を伴うシナリオを一般化する興味深い洞察を導出する。
関連論文リスト
- Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
本研究は、大規模言語モデル(LLM)用に設計された離散トークン化手法の最初の構造的分類と解析である。
古典的および近代的なパラダイムにまたがる8つの代表的なVQ変種を分類し、アルゴリズムの原理を分析し、力学を訓練し、LLMパイプラインとの統合に挑戦する。
コードブックの崩壊、不安定な勾配推定、モダリティ固有の符号化制約など、重要な課題を特定する。
論文 参考訳(メタデータ) (2025-07-21T10:52:14Z) - Fine-tuning Large Language Model for Automated Algorithm Design [23.04239252690957]
アルゴリズム設計のための大規模言語モデル(LLM)の微調整について検討する。
我々の実験は3つの異なるアルゴリズム設計タスクにまたがっている。
以上の結果から, 微調整LLMは市販のLLMよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2025-07-13T15:21:23Z) - Position: We Need An Algorithmic Understanding of Generative AI [7.425924654036041]
本稿では,LLMが学習・使用するアルゴリズムを体系的に研究するためのフレームワークであるAlgEvalを提案する。
AlgEvalは、潜在表現、注意、推論時間計算に反映されるアルゴリズムプリミティブと、タスク固有の問題を解決するアルゴリズム構成を明らかにすることを目的としている。
論文 参考訳(メタデータ) (2025-07-10T08:38:47Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
大規模言語モデル(LLM)は、従来の手法を進化させるために情報検索に広く統合されている。
エージェント検索フレームワークであるEXSEARCHを提案する。
4つの知識集約ベンチマークの実験では、EXSEARCHはベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2025-05-26T15:27:55Z) - Combinatorial Optimization for All: Using LLMs to Aid Non-Experts in Improving Optimization Algorithms [0.9668407688201361]
大規模言語モデル(LLM)は最適化アルゴリズムのためのコード生成において顕著な可能性を示している。
本稿では,アルゴリズムをスクラッチから作成するのではなく,専門知識を必要とせずに既存のものを改善する方法について検討する。
論文 参考訳(メタデータ) (2025-03-14T00:26:00Z) - Systematic Analysis of LLM Contributions to Planning: Solver, Verifier, Heuristic [6.687149103409949]
大規模言語モデル(LLM)が計画問題の解決にどのように貢献するかを系統的に分析する。
解析の結果,LLMは最適計画を生成するのが難しいが,中間/不完全解に対してフィードバック信号を提供するのがはるかに優れていることがわかった。
論文 参考訳(メタデータ) (2024-12-12T18:16:46Z) - Are Large-Language Models Graph Algorithmic Reasoners? [45.592341677933646]
明示グラフ上の古典的アルゴリズム推論タスクにおいて,LLM(Large Language Models)の性能を評価するために設計されたベンチマークを導入する。
我々のベンチマークは、接続のためのBFS(Breadth-First Search)とDFS(Depth-First Search)、すべてのノードの最短経路に対するDijkstraのアルゴリズムとFloyd-Warshallアルゴリズム、プリムの最小スパンニングツリー(MST-Prim's)アルゴリズムの5つの基本アルゴリズムを含む。
論文 参考訳(メタデータ) (2024-10-29T23:28:37Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Thought of Search: Planning with Language Models Through The Lens of Efficiency [22.47015814897628]
我々は近年の傾向が非効率性のために健全性と完全性の両方を放棄していると論じる。
本研究では,LLMを用いて検索コンポーネントのコードを生成することにより,全データセットを100%精度で解けることを示す。
論文 参考訳(メタデータ) (2024-04-18T01:27:29Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Large Language Model-Enhanced Algorithm Selection: Towards Comprehensive Algorithm Representation [27.378185644892984]
本稿では,Large Language Models (LLM) をアルゴリズム選択に導入する。
LLMはアルゴリズムの構造的・意味的な側面を捉えるだけでなく、文脈的認識とライブラリ機能理解も示している。
選択されたアルゴリズムは、与えられた問題と異なるアルゴリズムの一致度によって決定される。
論文 参考訳(メタデータ) (2023-11-22T06:23:18Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
本稿では,アルゴリズム的推論経路を通じて大規模言語モデルを促進する新しい手法を提案する。
この結果から,LLMをアルゴリズムを用いて指導すると,アルゴリズム自体よりも性能が向上する可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-20T22:36:23Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。