Non-local quench spectroscopy of fermionic excitations in 1D quantum spin chains
- URL: http://arxiv.org/abs/2407.14802v1
- Date: Sat, 20 Jul 2024 08:24:01 GMT
- Title: Non-local quench spectroscopy of fermionic excitations in 1D quantum spin chains
- Authors: Saverio Bocini, Filippo Caleca, Fabio Mezzacapo, Tommaso Roscilde,
- Abstract summary: We show theoretically that emphquench spectroscopy can reconstruct accurately the dispersion relation of fermionic quasiparticles in spin chains.
Our analysis is based on new exact results for the quench dynamics of quantum spin chains.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The elementary excitations of quantum spin systems have generally the nature of weakly interacting bosonic quasi-particles, generated by local operators acting on the ground state. Nonetheless in one spatial dimension the nature of the quasiparticles can change radically, since many relevant one-dimensional $S=1/2$ Hamiltonians can be exactly mapped onto models of spinless fermions with local hopping and interactions. Due to the non-local nature of the spin-to-fermion mapping, observing directly the fermionic quasiparticle excitations is impossible using local probes, which are at the basis of all the forms of spectroscopy (such as neutron scattering) traditionally available in condensed matter physics. Here we show theoretically that \emph{quench spectroscopy} for synthetic quantum matter -- which probes the excitation spectrum of a system by monitoring the nonequilibrium dynamics of its correlation functions -- can reconstruct accurately the dispersion relation of fermionic quasiparticles in spin chains. This possibility relies on the ability of quantum simulation experiments to measure non-local spin-spin correlation functions, corresponding to elementary fermionic correlation functions. Our analysis is based on new exact results for the quench dynamics of quantum spin chains; and it opens the path to probe arbitrary quasiparticle excitations in synthetic quantum matter.
Related papers
- Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - Quantum-induced Stochastic Optomechanical Dynamics [0.0]
Quantum fluctuations lead to state-dependent non-equilibrium noise, which is exponentially enhanced by wavepacket delocalization.
For the case of nanoparticles coupled by the Coulomb interaction such noise can imprint potentially measurable signatures in multiparticle levitation experiments.
arXiv Detail & Related papers (2024-01-29T19:30:21Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Collective P-Wave Orbital Dynamics of Ultracold Fermions [0.0]
We consider the non-equilibrium orbital dynamics of spin-polarized ultracold fermions in the first excited band of an optical lattice.
A specific lattice depth and filling configuration is designed to allow the $p_x$ and $p_y$ excited orbital degrees of freedom to act as a pseudo-spin.
arXiv Detail & Related papers (2021-04-13T19:47:05Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Fractional quantum Hall physics and higher-order momentum correlations
in a few spinful fermionic contact-interacting ultracold atoms in rotating
traps [0.0]
This paper provides benchmark results for $N$-body spin-unresolved, as well as spin-resolved, momentum correlations measurable in time-of-flight experiments with individual particle detection.
The application of a small perturbing stirring potential induces, at the ensuing avoided crossings, formation of symmetry broken states exhibiting ordered polygonal-ring structures.
Analysis of the calculated LLL wavefunction enables a two-dimensional generalization of the Girardeau one-dimensional 'fermionization' scheme, originally invoked for mapping of bosonic-type wave functions to those of spinless fermions.
arXiv Detail & Related papers (2020-06-17T02:08:13Z) - Position and spin in relativistic quantum mechanics [68.8204255655161]
The position and spin operators in the Foldy-Wouthuysen representation are quantum-mechanical counterparts of the classical position and spin variables.
The spin-orbit interaction does not exist for a free particle if the conventional operators of the orbital angular momentum and the rest-frame spin are used.
arXiv Detail & Related papers (2020-03-14T07:49:40Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.