論文の概要: Conversational Rubert for Detecting Competitive Interruptions in ASR-Transcribed Dialogues
- arxiv url: http://arxiv.org/abs/2407.14940v1
- Date: Sat, 20 Jul 2024 17:25:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 19:58:07.200647
- Title: Conversational Rubert for Detecting Competitive Interruptions in ASR-Transcribed Dialogues
- Title(参考訳): ASR-Transcribed Dialogueにおける競合中断検出のための会話ルーベルト
- Authors: Dmitrii Galimzianov, Viacheslav Vyshegorodtsev,
- Abstract要約: 割り込みを自動的に分類するシステムは、コールセンター、特に顧客満足度モニタリングとエージェントモニタリングのタスクで利用することができる。
我々は、ASRで書き起こされた顧客サポート電話対話からなる社内データセットをロシア語で作成し、テキストベースの割り込み分類モデルを開発した。
- 参考スコア(独自算出の注目度): 0.6138671548064356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interruption in a dialogue occurs when the listener begins their speech before the current speaker finishes speaking. Interruptions can be broadly divided into two groups: cooperative (when the listener wants to support the speaker), and competitive (when the listener tries to take control of the conversation against the speaker's will). A system that automatically classifies interruptions can be used in call centers, specifically in the tasks of customer satisfaction monitoring and agent monitoring. In this study, we developed a text-based interruption classification model by preparing an in-house dataset consisting of ASR-transcribed customer support telephone dialogues in Russian. We fine-tuned Conversational RuBERT on our dataset and optimized hyperparameters, and the model performed well. With further improvements, the proposed model can be applied to automatic monitoring systems.
- Abstract(参考訳): 対話の中断は、現在の話者が話す前にリスナーがスピーチを開始するときに起こる。
割り込みは、協力的(リスナーがスピーカーを支持したい場合)と競争的(リスナーが話者の意志に反して会話を制御しようとする場合)の2つのグループに分けられる。
割り込みを自動的に分類するシステムは、コールセンター、特に顧客満足度モニタリングとエージェントモニタリングのタスクで利用することができる。
本研究では、ASRで書き起こされた顧客サポート電話対話からなる社内データセットをロシア語で作成し、テキストベースの割り込み分類モデルを開発した。
データセット上でReversational RuBERTを微調整し,ハイパーパラメータを最適化した。
さらなる改良により,提案手法を自動監視システムに適用することができる。
関連論文リスト
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
GPT-4oのようなシステムで実証された音声対話モデルの最近の進歩は、音声領域において大きな注目を集めている。
これらの高度な音声対話モデルは、音声、音楽、その他の音声関連の特徴を理解するだけでなく、音声のスタイリスティックな特徴や音節的な特徴も捉える。
音声対話システムの進歩にもかかわらず、これらのシステムを体系的に組織化し分析する包括的調査が欠如している。
論文 参考訳(メタデータ) (2024-11-15T04:16:45Z) - Text-Based Detection of On-Hold Scripts in Contact Center Calls [0.6138671548064356]
平均保持時間は、顧客満足度に影響を与えるため、コールセンターにとって懸念事項である。
本研究では,自動音声認識技術により書き起こされたカスタマーサービスコールのオンホールドフレーズを検出する自然言語処理モデルを提案する。
論文 参考訳(メタデータ) (2024-07-13T11:11:41Z) - Controllable Mixed-Initiative Dialogue Generation through Prompting [50.03458333265885]
混合開始対話タスクには、情報の繰り返し交換と会話制御が含まれる。
エージェントは、ポリシープランナーが定める特定の対話意図や戦略に従う応答を生成することにより、コントロールを得る。
標準的なアプローチは、これらの意図に基づいて生成条件を実行するために、訓練済みの言語モデルを微調整している。
代わりに、条件生成の微調整に代えて、大きな言語モデルをドロップインで置き換えるように促します。
論文 参考訳(メタデータ) (2023-05-06T23:11:25Z) - Question-Interlocutor Scope Realized Graph Modeling over Key Utterances
for Dialogue Reading Comprehension [61.55950233402972]
本稿では,対話読解のためのキーワード抽出手法を提案する。
複数の連続した発話によって形成された単位に対して予測を行い、より多くの回答を含む発話を実現する。
発話のテキスト上に構築されたグラフとして,質問-対話者スコープ実現グラフ(QuISG)モデルを提案する。
論文 参考訳(メタデータ) (2022-10-26T04:00:42Z) - UniDS: A Unified Dialogue System for Chit-Chat and Task-oriented
Dialogues [59.499965460525694]
上記の2つのスキルを備えた統合対話システム(UniDS)を提案する。
我々は、チャットとタスク指向の対話の両方に対応可能な統合対話データスキーマを設計する。
我々は、事前訓練されたチャット対話モデルから混合対話データでUniDSを訓練する。
論文 参考訳(メタデータ) (2021-10-15T11:56:47Z) - A Speaker-aware Parallel Hierarchical Attentive Encoder-Decoder Model
for Multi-turn Dialogue Generation [13.820298189734686]
本稿では,マルチターン会話における話者の区別を強調するオープンドメイン対話生成モデルを提案する。
実験の結果,PHAEDは自動評価と人的評価の両面で最先端の成績を示した。
論文 参考訳(メタデータ) (2021-10-13T16:08:29Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - Actionable Conversational Quality Indicators for Improving Task-Oriented
Dialog Systems [2.6094079735487994]
本稿では、ACQI(Actionable Conversational Quality Indicator)の使用について紹介し、解説する。
ACQIは、改善可能なダイアログの一部を認識し、改善する方法を推奨するために使用される。
本稿では、商用顧客サービスアプリケーションで使用されるLivePersonの内部ダイアログシステムにおけるACQIの使用の有効性を示す。
論文 参考訳(メタデータ) (2021-09-22T22:41:42Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z) - Interview: A Large-Scale Open-Source Corpus of Media Dialog [11.28504775964698]
本稿では,ニュースインタビューの書き起こしから収集した大規模(105Kの会話)メディアダイアログデータセット「Interview」を紹介する。
既存の会話データに対する大規模プロキシと比較して、我々のデータセットでトレーニングされた言語モデルは、ドメイン外のゼロショットのパフォーマンスが向上する。
「インタービュー」には各ターンの話者ロールアノテーションが含まれており、エンゲージメント・レスポンシブ・ダイアログシステムの開発を容易にする。
論文 参考訳(メタデータ) (2020-04-07T02:44:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。