論文の概要: Enhanced Intrusion Detection in IIoT Networks: A Lightweight Approach with Autoencoder-Based Feature Learning
- arxiv url: http://arxiv.org/abs/2501.15266v1
- Date: Sat, 25 Jan 2025 16:24:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:33.768178
- Title: Enhanced Intrusion Detection in IIoT Networks: A Lightweight Approach with Autoencoder-Based Feature Learning
- Title(参考訳): IIoTネットワークにおける侵入検出の強化:オートエンコーダによる特徴学習による軽量化
- Authors: Tasnimul Hasan, Abrar Hossain, Mufakir Qamar Ansari, Talha Hussain Syed,
- Abstract要約: 侵入検知システム(IDS)は,異常なネットワーク行動や悪質な活動の検出・防止に不可欠である。
本研究は,次元縮小のためのオートエンコーダの活用を含む,IDS性能向上のための6つの革新的なアプローチを実装した。
我々はJetson Nano上で最初にモデルをデプロイし、バイナリ分類では0.185ms、マルチクラス分類では0.187msの推論時間を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rapid expansion of the Industrial Internet of Things (IIoT) has significantly advanced digital technologies and interconnected industrial systems, creating substantial opportunities for growth. However, this growth has also heightened the risk of cyberattacks, necessitating robust security measures to protect IIoT networks. Intrusion Detection Systems (IDS) are essential for identifying and preventing abnormal network behaviors and malicious activities. Despite the potential of Machine Learning (ML)--based IDS solutions, existing models often face challenges with class imbalance and multiclass IIoT datasets, resulting in reduced detection accuracy. This research directly addresses these challenges by implementing six innovative approaches to enhance IDS performance, including leveraging an autoencoder for dimensional reduction, which improves feature learning and overall detection accuracy. Our proposed Decision Tree model achieved an exceptional F1 score and accuracy of 99.94% on the Edge-IIoTset dataset. Furthermore, we prioritized lightweight model design, ensuring deployability on resource-constrained edge devices. Notably, we are the first to deploy our model on a Jetson Nano, achieving inference times of 0.185 ms for binary classification and 0.187 ms for multiclass classification. These results highlight the novelty and robustness of our approach, offering a practical and efficient solution to the challenges posed by imbalanced and multiclass IIoT datasets, thereby enhancing the detection and prevention of network intrusions.
- Abstract(参考訳): 産業用モノのインターネット(Industrial Internet of Things, IIoT)の急速な拡大は、デジタル技術と相互接続産業システムを大きく進歩させ、成長の機会を生み出している。
しかし、この成長はサイバー攻撃のリスクを増し、IIoTネットワークを保護するための堅牢なセキュリティ対策を必要としている。
侵入検知システム(IDS)は,異常なネットワーク行動や悪質な活動の検出・防止に不可欠である。
機械学習(ML)ベースのIDSソリューションの可能性にもかかわらず、既存のモデルはクラス不均衡とマルチクラスIIoTデータセットの課題に直面し、検出精度が低下する。
本研究は,IDS性能向上のための6つの革新的アプローチを実装することにより,これらの課題を直接解決し,次元還元のためのオートエンコーダを活用することにより,特徴学習と全体的な検出精度を向上させる。
提案した決定木モデルは、Edge-IIoTsetデータセットにおいて、例外的なF1スコアと99.94%の精度を達成した。
さらに、軽量なモデル設計を優先し、リソース制約されたエッジデバイスへのデプロイ性を確保する。
特に、我々はJetson Nano上でモデルを最初にデプロイし、バイナリ分類では0.185ms、マルチクラス分類では0.187msの推論時間を達成する。
これらの結果は,不均衡なIIoTデータセットとマルチクラスのIIoTデータセットがもたらす課題に対して,実用的で効率的な解決策を提供することによって,ネットワーク侵入の検出と防止を向上する,このアプローチの新規性と堅牢性を強調している。
関連論文リスト
- Efficient Intrusion Detection: Combining $χ^2$ Feature Selection with CNN-BiLSTM on the UNSW-NB15 Dataset [2.239394800147746]
侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSをデプロイする上での課題である。
本稿では、軽量畳み込みニューラルネットワーク(CNN)と双方向長短期記憶(BiLSTM)を組み合わせた効果的なIDSモデルを提案する。
論文 参考訳(メタデータ) (2024-07-20T17:41:16Z) - Strengthening Network Intrusion Detection in IoT Environments with Self-Supervised Learning and Few Shot Learning [1.0678175996321808]
IoT(Internet of Things)は、インテリジェンスを日常のオブジェクトに統合するブレークスルー技術として紹介されている。
IoTネットワークが拡大し、拡大するにつれ、サイバーセキュリティ攻撃の影響を受けやすくなっている。
本稿では,これらの課題に対処する新しい侵入検知手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T06:30:22Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
提案モデルは,畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)ディープラーニング(DL)モデルを組み合わせて構成する。
この融合により、IoTトラフィックをバイナリカテゴリ、良性、悪意のあるアクティビティに検出し、分類することが可能になる。
提案モデルの精度は98.42%,最小損失は0.0275である。
論文 参考訳(メタデータ) (2024-05-28T22:12:15Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Robust Attack Detection Approach for IIoT Using Ensemble Classifier [0.0]
目的は、IIoTネットワークの信頼性を高めるために、2相異常検出モデルを開発することである。
提案されたモデルは、WUSTL_IIOT-2018、N_Ba IoT、Bot_IoTなどの標準的なIoT攻撃オフレーヤでテストされている。
また,提案モデルが従来の手法より優れており,IIoTネットワークの信頼性が向上していることを示す。
論文 参考訳(メタデータ) (2021-01-30T07:21:44Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - A cognitive based Intrusion detection system [0.0]
侵入検知は、コンピュータネットワークのセキュリティを提供する重要なメカニズムの1つである。
本稿では,Deep Neural Network Ans Supportctor Machine Classifierに基づく新しい手法を提案する。
提案手法は, 侵入検知に類似した手法により, より精度良く攻撃を予測できる。
論文 参考訳(メタデータ) (2020-05-19T13:30:30Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。