Sim-CLIP: Unsupervised Siamese Adversarial Fine-Tuning for Robust and Semantically-Rich Vision-Language Models
- URL: http://arxiv.org/abs/2407.14971v2
- Date: Fri, 15 Nov 2024 21:09:28 GMT
- Title: Sim-CLIP: Unsupervised Siamese Adversarial Fine-Tuning for Robust and Semantically-Rich Vision-Language Models
- Authors: Md Zarif Hossain, Ahmed Imteaj,
- Abstract summary: We propose Sim-CLIP, an unsupervised adversarial fine-tuning method that enhances the robustness of the widely-used CLIP vision encoder against adversarial attacks.
By employing a Siamese architecture with cosine similarity loss, Sim-CLIP learns semantically meaningful and attack-resilient visual representations without requiring large batch sizes or momentum encoders.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language models (VLMs) have achieved significant strides in recent times specially in multimodal tasks, yet they remain susceptible to adversarial attacks on their vision components. To address this, we propose Sim-CLIP, an unsupervised adversarial fine-tuning method that enhances the robustness of the widely-used CLIP vision encoder against such attacks while maintaining semantic richness and specificity. By employing a Siamese architecture with cosine similarity loss, Sim-CLIP learns semantically meaningful and attack-resilient visual representations without requiring large batch sizes or momentum encoders. Our results demonstrate that VLMs enhanced with Sim-CLIP's fine-tuned CLIP encoder exhibit significantly enhanced robustness against adversarial attacks, while preserving semantic meaning of the perturbed images. Notably, Sim-CLIP does not require additional training or fine-tuning of the VLM itself; replacing the original vision encoder with our fine-tuned Sim-CLIP suffices to provide robustness. This work underscores the significance of reinforcing foundational models like CLIP to safeguard the reliability of downstream VLM applications, paving the way for more secure and effective multimodal systems.
Related papers
- Cross-Modal Obfuscation for Jailbreak Attacks on Large Vision-Language Models [11.867355323884217]
We present a novel black-box jailbreak attack framework that decomposes malicious prompts into semantically benign visual and textual fragments.<n>Our approach supports adjustable reasoning complexity and requires significantly fewer queries than prior attacks, enabling both stealth and efficiency.
arXiv Detail & Related papers (2025-06-20T05:30:25Z) - CeTAD: Towards Certified Toxicity-Aware Distance in Vision Language Models [16.5022773312661]
We propose a universal certified defence framework to safeguard large vision-language models against jailbreak attacks.
First, we proposed a novel distance metric to quantify semantic discrepancies between malicious and intended responses.
Then, we devise a regressed certification approach that employs randomized smoothing to provide formal robustness guarantees.
arXiv Detail & Related papers (2025-03-08T17:33:55Z) - CLIP is Strong Enough to Fight Back: Test-time Counterattacks towards Zero-shot Adversarial Robustness of CLIP [54.660471826755234]
We show that malicious perturbations that seek to maximise the classification loss lead to falsely stable' images.
We propose to leverage the pre-trained vision encoder of CLIP to counterattack such adversarial images during inference to achieve robustness.
Our paradigm is simple and training-free, providing the first method to defend CLIP from adversarial attacks at test time.
arXiv Detail & Related papers (2025-03-05T15:51:59Z) - Robust-LLaVA: On the Effectiveness of Large-Scale Robust Image Encoders for Multi-modal Large Language Models [26.656858396343726]
Multi-modal Large Language Models (MLLMs) excel in vision-language tasks but remain vulnerable to visual adversarial perturbations.
Existing methods seek to mitigate these risks by applying constrained adversarial fine-tuning to CLIP vision encoders on ImageNet-scale data.
We explore an alternative approach of leveraging existing vision classification models that have been adversarially pre-trained on large-scale data.
arXiv Detail & Related papers (2025-02-03T17:59:45Z) - Retention Score: Quantifying Jailbreak Risks for Vision Language Models [60.48306899271866]
Vision-Language Models (VLMs) are integrated with Large Language Models (LLMs) to enhance multi-modal machine learning capabilities.
This paper aims to assess the resilience of VLMs against jailbreak attacks that can compromise model safety compliance and result in harmful outputs.
To evaluate a VLM's ability to maintain its robustness against adversarial input perturbations, we propose a novel metric called the textbfRetention Score.
arXiv Detail & Related papers (2024-12-23T13:05:51Z) - Preserving Multi-Modal Capabilities of Pre-trained VLMs for Improving Vision-Linguistic Compositionality [69.76121008898677]
Fine-grained Selective Calibrated CLIP integrates local hard negative loss and selective calibrated regularization.
Our evaluations show that FSC-CLIP not only achieves compositionality on par with state-of-the-art models but also retains strong multi-modal capabilities.
arXiv Detail & Related papers (2024-10-07T17:16:20Z) - Securing Vision-Language Models with a Robust Encoder Against Jailbreak and Adversarial Attacks [0.0]
Large Vision-Language Models (LVLMs) have significantly advanced AI by excelling in vision-language tasks.
Jailbreak attacks bypass safety protocols and cause the model to generate misleading or harmful responses.
We propose Sim-CLIP+, a novel defense mechanism that adversarially fine-tunes the CLIP vision encoder by leveraging a Siamese architecture.
arXiv Detail & Related papers (2024-09-11T15:39:42Z) - Cross-modality Information Check for Detecting Jailbreaking in Multimodal Large Language Models [17.663550432103534]
Multimodal Large Language Models (MLLMs) extend the capacity of LLMs to understand multimodal information comprehensively.
These models are susceptible to jailbreak attacks, where malicious users can break the safety alignment of the target model and generate misleading and harmful answers.
We propose Cross-modality Information DEtectoR (CIDER), a plug-and-play jailbreaking detector designed to identify maliciously perturbed image inputs.
arXiv Detail & Related papers (2024-07-31T15:02:46Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
We propose a more comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within Large Vision-Language Models.
Our attack method begins by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input.
An adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions.
arXiv Detail & Related papers (2024-05-28T07:13:30Z) - Safeguarding Vision-Language Models Against Patched Visual Prompt Injectors [31.383591942592467]
Vision-language models (VLMs) offer innovative ways to combine visual and textual data for enhanced understanding and interaction.
Patch-based adversarial attack is considered the most realistic threat model in physical vision applications.
We introduce SmoothVLM, a defense mechanism rooted in smoothing techniques, to protectVLMs from the threat of patched visual prompt injectors.
arXiv Detail & Related papers (2024-05-17T04:19:19Z) - Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language Models [42.379680603462155]
We propose an unsupervised adversarial fine-tuning scheme to obtain a robust CLIP vision encoder.
We show that stealth-attacks on users of LVLMs by a malicious third party providing manipulated images are no longer possible once one replaces the CLIP model with our robust one.
arXiv Detail & Related papers (2024-02-19T18:09:48Z) - Adversarial Prompt Tuning for Vision-Language Models [86.5543597406173]
Adversarial Prompt Tuning (AdvPT) is a technique to enhance the adversarial robustness of image encoders in Vision-Language Models (VLMs)
We demonstrate that AdvPT improves resistance against white-box and black-box adversarial attacks and exhibits a synergistic effect when combined with existing image-processing-based defense techniques.
arXiv Detail & Related papers (2023-11-19T07:47:43Z) - MF-CLIP: Leveraging CLIP as Surrogate Models for No-box Adversarial Attacks [65.86360607693457]
No-box attacks, where adversaries have no prior knowledge, remain relatively underexplored despite its practical relevance.
This work presents a systematic investigation into leveraging large-scale Vision-Language Models (VLMs) as surrogate models for executing no-box attacks.
Our theoretical and empirical analyses reveal a key limitation in the execution of no-box attacks stemming from insufficient discriminative capabilities for direct application of vanilla CLIP as a surrogate model.
We propose MF-CLIP: a novel framework that enhances CLIP's effectiveness as a surrogate model through margin-aware feature space optimization.
arXiv Detail & Related papers (2023-07-13T08:10:48Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
We show that the continuous and high-dimensional nature of the visual input makes it a weak link against adversarial attacks.
We exploit visual adversarial examples to circumvent the safety guardrail of aligned LLMs with integrated vision.
Our study underscores the escalating adversarial risks associated with the pursuit of multimodality.
arXiv Detail & Related papers (2023-06-22T22:13:03Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z) - When Does Contrastive Learning Preserve Adversarial Robustness from
Pretraining to Finetuning? [99.4914671654374]
We propose AdvCL, a novel adversarial contrastive pretraining framework.
We show that AdvCL is able to enhance cross-task robustness transferability without loss of model accuracy and finetuning efficiency.
arXiv Detail & Related papers (2021-11-01T17:59:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.