Fair Machine Learning for Healthcare Requires Recognizing the Intersectionality of Sociodemographic Factors, a Case Study
- URL: http://arxiv.org/abs/2407.15006v1
- Date: Thu, 30 May 2024 19:10:35 GMT
- Title: Fair Machine Learning for Healthcare Requires Recognizing the Intersectionality of Sociodemographic Factors, a Case Study
- Authors: Alissa A. Valentine, Alexander W. Charney, Isotta Landi,
- Abstract summary: Socioeconomic status (SES) is commonly included in machine learning models to control for health inequities.
Within an intersectional framework, patient SES, race, and sex were found to have significant interactions.
Increased SES is associated with a higher probability of obtaining a schizophrenia diagnosis in Black Americans.
Whereas high SES acts as a protective factor for SCZ diagnosis in White Americans.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As interest in implementing artificial intelligence (AI) in medical systems grows, discussion continues on how to evaluate the fairness of these systems, or the disparities they may perpetuate. Socioeconomic status (SES) is commonly included in machine learning models to control for health inequities, with the underlying assumption that increased SES is associated with better health. In this work, we considered a large cohort of patients from the Mount Sinai Health System in New York City to investigate the effect of patient SES, race, and sex on schizophrenia (SCZ) diagnosis rates via a logistic regression model. Within an intersectional framework, patient SES, race, and sex were found to have significant interactions. Our findings showed that increased SES is associated with a higher probability of obtaining a SCZ diagnosis in Black Americans ($\beta=4.1\times10^{-8}$, $SE=4.5\times10^{-9}$, $p < 0.001$). Whereas high SES acts as a protective factor for SCZ diagnosis in White Americans ($\beta=-4.1\times10^{-8}$, $SE=6.7\times10^{-9}$, $p < 0.001$). Further investigation is needed to reliably explain and quantify health disparities. Nevertheless, we advocate that building fair AI tools for the health care space requires recognizing the intersectionality of sociodemographic factors.
Related papers
- Fairness in Computational Innovations: Identifying Bias in Substance Use Treatment Length of Stay Prediction Models with Policy Implications [0.477529483515826]
Predictive machine learning (ML) models are computational innovations that can enhance medical decision-making.
However, societal biases can be encoded into such models, raising concerns about inadvertently affecting health outcomes for disadvantaged groups.
This issue is particularly pressing in the context of substance use disorder (SUD) treatment, where biases in predictive models could significantly impact the recovery of highly vulnerable patients.
arXiv Detail & Related papers (2024-12-08T06:47:23Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Unbiased Pain Assessment through Wearables and EHR Data: Multi-attribute
Fairness Loss-based CNN Approach [3.799109312082668]
We propose a Multi-attribute Fairness Loss (MAFL) based CNN model to account for any sensitive attributes included in the data.
We compare the proposed model with well-known existing mitigation procedures, and studies reveal that the implemented model performs favorably in contrast to state-of-the-art methods.
arXiv Detail & Related papers (2023-07-03T09:21:36Z) - Advancing Community Engaged Approaches to Identifying Structural Drivers
of Racial Bias in Health Diagnostic Algorithms [0.0]
Much attention has been raised recently about bias and the use of machine learning algorithms in healthcare.
This paper highlights the importance of centering the discussion of data and healthcare on people and their experiences with healthcare and science.
Collective memory of community trauma, through deaths attributed to poor healthcare, and negative experiences with healthcare are endogenous drivers of seeking treatment and experiencing effective care.
arXiv Detail & Related papers (2023-05-22T20:58:15Z) - Building predictive models of healthcare costs with open healthcare data [0.0]
We present an approach to developing a predictive model using machine-learning techniques.
We analyzed de-identified patient data from New York StateS, consisting of 2.3 million records in 2016.
We built models to predict costs from patient diagnoses and demographics.
arXiv Detail & Related papers (2023-04-05T02:12:58Z) - Auditing Algorithmic Fairness in Machine Learning for Health with
Severity-Based LOGAN [70.76142503046782]
We propose supplementing machine learning-based (ML) healthcare tools for bias with SLOGAN, an automatic tool for capturing local biases in a clinical prediction task.
LOGAN adapts an existing tool, LOcal Group biAs detectioN, by contextualizing group bias detection in patient illness severity and past medical history.
On average, SLOGAN identifies larger fairness disparities in over 75% of patient groups than LOGAN while maintaining clustering quality.
arXiv Detail & Related papers (2022-11-16T08:04:12Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Deep Learning Discovery of Demographic Biomarkers in Echocardiography [0.3957768262206625]
We test whether it is possible to predict age, race, and sex from cardiac ultrasound images using deep learning algorithms.
We trained video-based convolutional neural networks to predict age, sex, and race.
We found that deep learning models were able to identify age and sex, while unable to reliably predict race.
arXiv Detail & Related papers (2022-07-13T16:48:49Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
We analyze the intersection of fairness in machine learning and healthcare disparities.
We provide a critical review of the associated fairness metrics from a machine learning standpoint.
We propose several new research directions that hold promise for developing ethical and equitable ML applications in healthcare.
arXiv Detail & Related papers (2022-06-29T04:32:10Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - Brain Age Estimation From MRI Using Cascade Networks with Ranking Loss [75.03117866578913]
A novel 3D convolutional network, called two-stage-age-network (TSAN), is proposed to estimate brain age from T1-weighted MRI data.
Experiments with $6586$ MRIs showed that TSAN could provide accurate brain age estimation.
arXiv Detail & Related papers (2021-06-06T07:11:25Z) - Clinical prediction system of complications among COVID-19 patients: a
development and validation retrospective multicentre study [0.3569980414613667]
We used data collected from 3,352 COVID-19 patient encounters admitted to 18 facilities between April 1 and April 30, 2020 in Abu Dhabi (AD), UAE.
Using data collected during the first 24 hours of admission, the machine learning-based prognostic system predicts the risk of developing any of seven complications during the hospital stay.
The system achieves good accuracy across all complications and both regions.
arXiv Detail & Related papers (2020-11-28T18:16:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.