論文の概要: Digital Twin-based Driver Risk-Aware Intelligent Mobility Analytics for Urban Transportation Management
- arxiv url: http://arxiv.org/abs/2407.15025v1
- Date: Wed, 3 Jul 2024 01:44:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-28 18:39:09.740065
- Title: Digital Twin-based Driver Risk-Aware Intelligent Mobility Analytics for Urban Transportation Management
- Title(参考訳): デジタルツインを用いた都市交通管理のためのリスク認識型知的モビリティ分析
- Authors: Tao Li, Zilin Bian, Haozhe Lei, Fan Zuo, Ya-Ting Yang, Quanyan Zhu, Zhenning Li, Zhibin Chen, Kaan Ozbay,
- Abstract要約: 本稿では,デジタルツインをベースとしたドライバリスク認識知能モビリティ分析システムを提案する。
DT-DIMAシステムはパンティルトカメラからのリアルタイムトラフィック情報を統合する。
このシステムは、ネットワーク全体のモビリティと安全性のリスクをリアルタイムで予測する。
- 参考スコア(独自算出の注目度): 18.015270631863665
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traditional mobility management strategies emphasize macro-level mobility oversight from traffic-sensing infrastructures, often overlooking safety risks that directly affect road users. To address this, we propose a Digital Twin-based Driver Risk-Aware Intelligent Mobility Analytics (DT-DIMA) system. The DT-DIMA system integrates real-time traffic information from pan-tilt-cameras (PTCs), synchronizes this data into a digital twin to accurately replicate the physical world, and predicts network-wide mobility and safety risks in real time. The system's innovation lies in its integration of spatial-temporal modeling, simulation, and online control modules. Tested and evaluated under normal traffic conditions and incidental situations (e.g., unexpected accidents, pre-planned work zones) in a simulated testbed in Brooklyn, New York, DT-DIMA demonstrated mean absolute percentage errors (MAPEs) ranging from 8.40% to 15.11% in estimating network-level traffic volume and MAPEs from 0.85% to 12.97% in network-level safety risk prediction. In addition, the highly accurate safety risk prediction enables PTCs to preemptively monitor road segments with high driving risks before incidents take place. Such proactive PTC surveillance creates around a 5-minute lead time in capturing traffic incidents. The DT-DIMA system enables transportation managers to understand mobility not only in terms of traffic patterns but also driver-experienced safety risks, allowing for proactive resource allocation in response to various traffic situations. To the authors' best knowledge, DT-DIMA is the first urban mobility management system that considers both mobility and safety risks based on digital twin architecture.
- Abstract(参考訳): 従来のモビリティ管理戦略は、交通検知インフラからのマクロレベルのモビリティ監視を強調しており、道路利用者に直接影響する安全リスクを見落としていることが多い。
そこで我々は,Digital Twinをベースとしたドライバリスク認識知能モビリティ分析(DT-DIMA)システムを提案する。
DT-DIMAシステムは、パンチルトカメラ(PTC)からのリアルタイムトラフィック情報を統合し、このデータをデジタルツインに同期させ、物理的世界を正確に再現し、ネットワーク全体のモビリティと安全性のリスクをリアルタイムに予測する。
このシステムの革新は、空間時間モデリング、シミュレーション、オンライン制御モジュールの統合にある。
ニューヨーク州ブルックリンの模擬試験場において、通常の交通条件と偶発的な状況(予期せぬ事故、事前計画された作業区域など)で試験および評価され、DT-DIMAは、ネットワークレベルの交通量とMAPEを0.85%から12.97%まで推定する平均絶対パーセンテージ誤差(MAPE)を8.40%から15.11%まで示した。
さらに、高精度な安全リスク予測により、PSCは事故が起こる前に高い運転リスクを伴う道路セグメントを事前に監視することができる。
このようなプロアクティブなPTC監視は、交通事故を捉えるのに約5分間のリードタイムを生み出す。
DT-DIMAシステムでは,交通パターンだけでなく運転者の安全リスクも考慮し,交通状況に応じて積極的に資源配分を行うことができる。
著者らの知る限り、DT-DIMAはデジタルツインアーキテクチャに基づくモビリティと安全性の両方のリスクを考慮した最初の都市モビリティ管理システムである。
関連論文リスト
- Automatic driving lane change safety prediction model based on LSTM [3.8749946206111603]
LSTMネットワークに基づく軌道予測法は、長い時間領域における軌道予測において明らかな利点がある。
その結果、従来のモデルベース手法と比較して、LSTMネットワークに基づく軌道予測法は、長い時間領域における軌道予測において明らかな利点があることが示された。
論文 参考訳(メタデータ) (2024-02-28T12:34:04Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Controllable Adversaries [94.84458417662407]
本稿では,新しい拡散制御型クローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
我々は,認知過程における敵対的項を通して,安全クリティカルなシナリオをシミュレートする新しい手法を開発した。
我々はNuScenesデータセットを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - RCP-RF: A Comprehensive Road-car-pedestrian Risk Management Framework
based on Driving Risk Potential Field [1.625213292350038]
本研究では,コネクテッド・アンド・オートマチック・ビークル(CAV)環境下での電位場理論に基づく総合運転リスク管理フレームワークRCP-RFを提案する。
既存のアルゴリズムと異なり,エゴ車と障害物車と歩行者係数の移動傾向は,提案手法において正当に考慮されている。
実世界のデータセットNGSIMおよび実AVプラットフォーム上での最先端手法に対する提案手法の優位性を検証する実証的研究を行った。
論文 参考訳(メタデータ) (2023-05-04T01:54:37Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - Network-level Safety Metrics for Overall Traffic Safety Assessment: A
Case Study [7.8191100993403495]
本稿では,道路インフラストラクチャセンサによる画像の処理による交通流の安全性評価のための,ネットワークレベルの新しい安全性指標について述べる。
安全性指標とクラッシュデータの統合解析により,代表的なネットワークレベルの安全性指標とクラッシュ頻度との洞察力のある時間的および空間的相関が明らかになった。
論文 参考訳(メタデータ) (2022-01-27T19:07:08Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
本研究では,フィールドと集中型プロセスを組み合わせた歩行者安全システムについて紹介する。
本システムは,現場における今後のリスクを直ちに警告し,実際の衝突のない道路の安全レベルを評価することにより,危険頻繁なエリアの安全性を向上させることができる。
論文 参考訳(メタデータ) (2021-07-26T23:00:56Z) - Integrated Traffic Simulation-Prediction System using Neural Networks
with Application to the Los Angeles International Airport Road Network [39.975268616636]
提案システムは,最適化に基づくOD行列生成手法と,トラフィックフローのパターンを介してOD行列を予測するニューラルネットワーク(NN)モデルと,微視的トラフィックシミュレータを含む。
ロサンゼルス国際空港(LAX)中央ターミナルエリア(CTA)の道路ネットワーク上で提案システムをテストする。
論文 参考訳(メタデータ) (2020-08-05T01:41:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。