Digital Twin-based Driver Risk-Aware Intelligent Mobility Analytics for Urban Transportation Management
- URL: http://arxiv.org/abs/2407.15025v1
- Date: Wed, 3 Jul 2024 01:44:22 GMT
- Title: Digital Twin-based Driver Risk-Aware Intelligent Mobility Analytics for Urban Transportation Management
- Authors: Tao Li, Zilin Bian, Haozhe Lei, Fan Zuo, Ya-Ting Yang, Quanyan Zhu, Zhenning Li, Zhibin Chen, Kaan Ozbay,
- Abstract summary: We propose a Digital Twin-based Driver Risk-Aware Intelligent Mobility Analytics system.
The DT-DIMA system integrates real-time traffic information from pan-tilt-cameras.
The system predicts network-wide mobility and safety risks in real time.
- Score: 18.015270631863665
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traditional mobility management strategies emphasize macro-level mobility oversight from traffic-sensing infrastructures, often overlooking safety risks that directly affect road users. To address this, we propose a Digital Twin-based Driver Risk-Aware Intelligent Mobility Analytics (DT-DIMA) system. The DT-DIMA system integrates real-time traffic information from pan-tilt-cameras (PTCs), synchronizes this data into a digital twin to accurately replicate the physical world, and predicts network-wide mobility and safety risks in real time. The system's innovation lies in its integration of spatial-temporal modeling, simulation, and online control modules. Tested and evaluated under normal traffic conditions and incidental situations (e.g., unexpected accidents, pre-planned work zones) in a simulated testbed in Brooklyn, New York, DT-DIMA demonstrated mean absolute percentage errors (MAPEs) ranging from 8.40% to 15.11% in estimating network-level traffic volume and MAPEs from 0.85% to 12.97% in network-level safety risk prediction. In addition, the highly accurate safety risk prediction enables PTCs to preemptively monitor road segments with high driving risks before incidents take place. Such proactive PTC surveillance creates around a 5-minute lead time in capturing traffic incidents. The DT-DIMA system enables transportation managers to understand mobility not only in terms of traffic patterns but also driver-experienced safety risks, allowing for proactive resource allocation in response to various traffic situations. To the authors' best knowledge, DT-DIMA is the first urban mobility management system that considers both mobility and safety risks based on digital twin architecture.
Related papers
- Autonomous Vehicles Using Multi-Agent Reinforcement Learning for Routing Decisions Can Harm Urban Traffic [0.0]
Autonomous vehicles (AVs) using Multi-Agent Reinforcement Learning (MARL) for simultaneous route optimization may destabilize traffic environments.
Our experiments with standard MARL algorithms reveal that, even in trivial cases, policies often fail to converge to an optimal solution.
Future research must prioritize realistic benchmarks, cautious deployment strategies, and tools for monitoring and regulating AV routing behaviors.
arXiv Detail & Related papers (2025-02-18T13:37:02Z) - DeepMF: Deep Motion Factorization for Closed-Loop Safety-Critical Driving Scenario Simulation [11.059102404333885]
Safety-critical traffic scenarios are of great practical relevance to evaluating the robustness of autonomous driving systems.
Existing algorithms for generating safety-critical scenarios rely on snippets of previously recorded traffic events.
In this paper, we propose the Deep Motion Factorization framework, which extends static safety-critical driving scenario generation to closed-loop and interactive adversarial traffic simulation.
arXiv Detail & Related papers (2024-12-23T11:30:24Z) - Artificial Intelligence in Traffic Systems [0.0]
This article endeavors to review the topics where AI and traffic management intersect.
It comprises areas like AI-powered traffic signal control systems, automatic distance and velocity recognition.
The benefits of AI in traffic management are also diverse.
arXiv Detail & Related papers (2024-12-16T18:15:49Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - Passenger hazard perception based on EEG signals for highly automated driving vehicles [23.322910031715583]
This study explores neural mechanisms in passenger-vehicle interactions, leading to the development of a Passenger Cognitive Model (PCM) and the Passenger EEG Decoding Strategy (PEDS)
Central to PEDS is a novel Convolutional Recurrent Neural Network (CRNN) that captures spatial and temporal EEG data patterns.
Our findings highlight the predictive power of pre-event EEG data, enhancing the detection of hazardous scenarios and offering a network-driven framework for safer autonomous vehicles.
arXiv Detail & Related papers (2024-08-29T07:32:30Z) - Multi-level Traffic-Responsive Tilt Camera Surveillance through Predictive Correlated Online Learning [16.25152138605216]
This paper introduces the multi-level Traffic-Temporal Tilt Camera surveillance system (TTC-X)
TTC-X overcomes the limitations of a fixed field of view in traditional surveillance systems by providing mobilized and 360-degree coverage.
It is tested and evaluated under three experimental scenarios using real-world traffic data in Brooklyn, New York.
arXiv Detail & Related papers (2024-08-05T03:17:44Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) is a framework for safe end-to-end driving in autonomous vehicles.
Cat aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios.
Cat can effectively generate adversarial scenarios countering the agent being trained.
arXiv Detail & Related papers (2023-10-19T02:49:31Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.