論文の概要: Multi-Agent Causal Discovery Using Large Language Models
- arxiv url: http://arxiv.org/abs/2407.15073v3
- Date: Mon, 24 Feb 2025 02:47:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:50:28.856028
- Title: Multi-Agent Causal Discovery Using Large Language Models
- Title(参考訳): 大規模言語モデルを用いたマルチエージェント因果探索
- Authors: Hao Duong Le, Xin Xia, Zhang Chen,
- Abstract要約: 因果発見は機械学習における重要な研究領域である。
我々はMulti-Agent Causal Discovery Framework(MAC)を紹介する。
Debate-Coding Module (DCM) と Meta-Debate Module (MDM) の2つの主要なモジュールで構成されている。
- 参考スコア(独自算出の注目度): 10.020595983728482
- License:
- Abstract: Causal discovery aims to identify causal relationships between variables and is a critical research area in machine learning. Traditional methods focus on statistical or machine learning algorithms to uncover causal links from structured data, often overlooking the valuable contextual information provided by metadata. Large language models (LLMs) have shown promise in creating unified causal discovery frameworks by incorporating both structured data and metadata. However, their potential in multi-agent settings remains largely unexplored. To address this gap, we introduce the Multi-Agent Causal Discovery Framework (MAC), which consists of two key modules: the Debate-Coding Module (DCM) and the Meta-Debate Module (MDM). The DCM begins with a multi-agent debating and coding process, where agents use both structured data and metadata to collaboratively select the most suitable statistical causal discovery (SCD) method. The selected SCD is then applied to the structured data to generate an initial causal graph. This causal graph is transformed into causal metadata through the Meta Fusion mechanism. With all the metadata, MDM then refines the causal structure by leveraging a multi-agent debating framework. Extensive experiments across five datasets demonstrate that MAC outperforms both traditional statistical causal discovery methods and existing LLM-based approaches, achieving state-of-the-art performance.
- Abstract(参考訳): 因果発見は変数間の因果関係を識別することを目的としており、機械学習において重要な研究領域である。
従来の手法では、構造化データから因果関係を明らかにするための統計的アルゴリズムや機械学習アルゴリズムに重点を置いており、メタデータが提供する貴重なコンテキスト情報を見落としていることが多い。
大規模言語モデル(LLM)は、構造化データとメタデータの両方を組み込むことで、統一因果発見フレームワークを作成することを約束している。
しかし、マルチエージェント設定におけるその可能性はほとんど解明されていない。
このギャップに対処するために、DCM(Debate-Coding Module)とMDM(Meta-Debate Module)という2つの主要なモジュールからなるMulti-Agent Causal Discovery Framework(MAC)を導入する。
DCMはマルチエージェントの議論とコーディングプロセスから始まり、エージェントは構造化データとメタデータの両方を使用して、最も適切な統計的因果発見(SCD)法を協調的に選択する。
次に、選択されたSCDを構造化データに適用し、初期因果グラフを生成する。
この因果グラフはメタ融合機構を通じて因果メタデータに変換される。
すべてのメタデータで、MDMはマルチエージェントの議論フレームワークを活用することで因果構造を洗練します。
5つのデータセットにわたる大規模な実験により、MACは従来の統計的因果探索法と既存のLCMベースのアプローチの両方より優れており、最先端のパフォーマンスが達成されている。
関連論文リスト
- Exploring Multi-Modal Integration with Tool-Augmented LLM Agents for Precise Causal Discovery [45.777770849667775]
因果推論は、スマートヘルス、薬物発見のためのAI、AIOpsなど、ドメイン間の意思決定の必須基盤である。
ツール拡張 LLM を利用したマルチエージェントシステムである MATMCD を紹介する。
以上の結果から,マルチモーダル化による因果発見の可能性が示唆された。
論文 参考訳(メタデータ) (2024-12-18T09:50:00Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
推論問題に対するマルチエージェントLLMトレーニング(MALT)に向けた第一歩を提示する。
提案手法では,ヘテロジニアスLSMが割り当てられた逐次的マルチエージェント構成を用いる。
我々は,MATH,GSM8k,CQAにまたがるアプローチを評価し,MALT on Llama 3.1 8Bモデルでそれぞれ14.14%,7.12%,9.40%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - LLM-based Multi-Agent Reinforcement Learning: Current and Future Directions [8.55917897789612]
我々は、共通の目標を持つ複数のエージェントの協調作業と、それら間のコミュニケーションに焦点を当てる。
また、フレームワークの言語コンポーネントによって実現されるヒューマン・イン・オン・ザ・ループのシナリオについても検討する。
論文 参考訳(メタデータ) (2024-05-17T22:10:23Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
大規模言語モデル(LLM)は、幅広いタスクで大きな成功を収めています。
近年, 1 つの LLM を単一計画や意思決定エージェントとして利用する手法の開発により, 複雑な問題解決や世界シミュレーションにおいて, LLM ベースのマルチエージェントシステムは大きな進歩を遂げている。
論文 参考訳(メタデータ) (2024-01-21T23:36:14Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
大規模言語モデル(LLM)は、非常に高度な自然言語処理を持つ。
アプリケーションがマルチエージェント環境に拡大するにつれて、包括的な評価フレームワークの必要性が生じる。
この研究は、マルチエージェント設定内でLLMを評価するための新しい競合ベースのベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Theory of Mind for Multi-Agent Collaboration via Large Language Models [5.2767999863286645]
本研究では,多エージェント協調型テキストゲームにおけるLarge Language Models (LLMs) ベースのエージェントを,理論オブマインド (ToM) 推論タスクを用いて評価する。
LLMをベースとしたエージェント間の創発的協調行動と高次マインド理論の実証を行った。
論文 参考訳(メタデータ) (2023-10-16T07:51:19Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。