論文の概要: Experimental demonstration of reconstructing quantum states with generative models
- arxiv url: http://arxiv.org/abs/2407.15102v1
- Date: Sun, 21 Jul 2024 09:44:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 19:18:45.657040
- Title: Experimental demonstration of reconstructing quantum states with generative models
- Title(参考訳): 生成モデルによる量子状態の再構成実験
- Authors: Xuegang Li, Wenjie Jiang, Ziyue Hua, Weiting Wang, Xiaoxuan Pan, Weizhou Cai, Zhide Lu, Jiaxiu Han, Rebing Wu, Chang-Ling Zou, Dong-Ling Deng, Luyan Sun,
- Abstract要約: 本稿では,プログラム可能な超伝導トランスモン量子ビットの配列を用いたニューラルネットワーク生成モデルに基づく量子状態の再構成実験を行った。
本研究は、複雑な量子デバイスを検証・特徴化するための機械学習技術を活用した興味深い可能性について実験的に示すものである。
- 参考スコア(独自算出の注目度): 0.44600863117978684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state tomography, a process that reconstructs a quantum state from measurements on an ensemble of identically prepared copies, plays a crucial role in benchmarking quantum devices. However, brute-force approaches to quantum state tomography would become impractical for large systems, as the required resources scale exponentially with the system size. Here, we explore a machine learning approach and report an experimental demonstration of reconstructing quantum states based on neural network generative models with an array of programmable superconducting transmon qubits. In particular, we experimentally prepare the Greenberger-Horne-Zeilinger states and random states up to five qubits and demonstrate that the machine learning approach can efficiently reconstruct these states with the number of required experimental samples scaling linearly with system size. Our results experimentally showcase the intriguing potential for exploiting machine learning techniques in validating and characterizing complex quantum devices, offering a valuable guide for the future development of quantum technologies.
- Abstract(参考訳): 量子状態トモグラフィー(Quantum state tomography)は、同じ準備されたコピーのアンサンブルの測定から量子状態を再構成するプロセスであり、量子デバイスのベンチマークにおいて重要な役割を果たす。
しかし、必要なリソースがシステムサイズと指数関数的にスケールするにつれて、量子状態トモグラフィーに対するブルートフォースアプローチは大規模システムにとって実用的ではない。
本稿では, ニューラルネットワーク生成モデルに基づく量子状態の再構成を, プログラム可能な超伝導トランスモン量子ビットの配列で実証する。
特に,Greenberger-Horne-Zeilinger状態と5キュービットまでのランダム状態を作成し,これらの状態をシステムサイズに線形にスケーリングするために必要な実験サンプルの数で効率的に再構築できることを実証した。
本研究は,複雑な量子デバイスを検証・特徴化するための機械学習技術を活用するための興味深い可能性を実験的に示し,量子技術の今後の発展のための貴重なガイドを提供する。
関連論文リスト
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Measuring Arbitrary Physical Properties in Analog Quantum Simulation [0.5999777817331317]
アナログ量子シミュレーションにおける中心的な課題は、実験で生成された量子状態の望ましい物理的性質を特徴づけることである。
本稿では,汎用量子力学のエルゴード特性を利用したスケーラブルなプロトコルの提案と解析を行う。
我々のプロトコルは、制限された制御性を克服し、短期量子技術の汎用性と実用性を高めることをエキサイティングに約束する。
論文 参考訳(メタデータ) (2022-12-05T19:00:01Z) - Reconstructing complex states of a 20-qubit quantum simulator [0.6646556786265893]
本稿では, 量子状態の多角化を効果的に再現する手法を示す。
我々は,ニューラルネットワークの量子状態表現に基づく手法と比較して,状態再構成の品質と収束の高速化を観察する。
本研究は,多体量子系のクエンチダイナミクスによって生成される複素状態の効率的な実験的評価への道を開くものである。
論文 参考訳(メタデータ) (2022-08-09T15:52:20Z) - Reconstructing Quantum States Using Basis-Enhanced Born Machines [0.0]
ボルンマシンは2つのパウリ測度ベースのみからの射影測定を用いて純粋量子状態の再構成を行うことができることを示す。
我々は、基礎強化されたボルン機械を実装し、ライドバーグ原子の1次元鎖の位相図の上の基底状態を学ぶ。
このモデルは量子相関と異なる観測値を正確に予測し、システムサイズは37量子ビットとみなす。
論文 参考訳(メタデータ) (2022-06-02T19:52:38Z) - Adaptive Quantum State Tomography with Active Learning [0.0]
本稿では,能動学習を用いた量子状態トモグラフィーの効率的なスキームを提案し,実装する。
本手法は, 1次元のXXZモデルと運動的に制約されたスピン鎖の基底状態だけでなく, 様々なエンタングルメントの程度で異なるマルチキュービット状態の再構成を行う。
提案手法は,量子多体システムにおける物理的洞察を得るとともに,量子デバイスをベンチマークし,特徴付けるためにも有効である。
論文 参考訳(メタデータ) (2022-03-29T16:23:10Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Bidirectional information flow quantum state tomography [0.0]
双方向Gated Recurrent Unit Neural Network (BiGRU) に基づく量子状態トモグラフィー法を提案する。
この方法では、これらの量子状態を再構成し、高い忠実度を得るために、より少ない測定サンプルを使用できる。
論文 参考訳(メタデータ) (2021-03-31T02:57:27Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
我々は,古典的データを量子状態に効率よくロードし,距離推定を行う手法を用いて,量子近接Centroid分類器を設計する。
MNIST手書き桁データセットの古典的最寄りのセントロイド分類器の精度と8次元合成データの最大100%の精度とを一致させ,11量子ビットトラップイオン量子マシン上で実験的に実証した。
論文 参考訳(メタデータ) (2020-12-08T01:10:30Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
高次元システムにおける量子相関の生成と制御は、現在の量子技術の展望において大きな課題である。
本稿では,量子ウォークに基づく移動・蓄積機構により,$d$次元システムの絡み合った状態が得られるプロトコルを提案する。
特に、情報を軌道角運動量と単一光子の偏光度にエンコードするフォトニック実装について述べる。
論文 参考訳(メタデータ) (2020-10-14T14:33:34Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
機械学習にインスパイアされた変分法は、量子シミュレータのスケーラブルな状態キャラクタリゼーションへの有望な経路を提供する。
本研究では,2ビットの絡み合った状態を生成する実験から得られた測定データに適用することにより,いくつかの手法をベンチマークし比較する。
実験的な不完全性やノイズの存在下では、変動多様体を物理状態に収束させることで、再構成された状態の質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2020-07-31T17:25:12Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。